djbp commited on
Commit
c2f8e82
·
verified ·
1 Parent(s): 83e0791

Model save

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/swin-base-patch4-window7-224-in22k
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: swin-base-patch4-window7-224-in22k-MM_NMM_Classification_base_V10
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: validation
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.8358637669265491
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # swin-base-patch4-window7-224-in22k-MM_NMM_Classification_base_V10
33
+
34
+ This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.4069
37
+ - Accuracy: 0.8359
38
+ - Auc Overall: 0.9463
39
+ - Auc Class 0: 0.9637
40
+ - Auc Class 1: 0.9465
41
+ - Auc Class 2: 0.9286
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
+ - train_batch_size: 128
62
+ - eval_batch_size: 128
63
+ - seed: 42
64
+ - gradient_accumulation_steps: 4
65
+ - total_train_batch_size: 512
66
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
67
+ - lr_scheduler_type: linear
68
+ - lr_scheduler_warmup_ratio: 0.1
69
+ - num_epochs: 7
70
+
71
+ ### Training results
72
+
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.44.2
78
+ - Pytorch 1.13.1+cu117
79
+ - Datasets 2.20.0
80
+ - Tokenizers 0.19.1