--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-MM_Classification_base results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8770806658130602 --- # swin-base-patch4-window7-224-MM_Classification_base This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co./microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2998 - Accuracy: 0.8771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.887 | 1.0 | 19 | 0.4012 | 0.8566 | | 0.4302 | 2.0 | 38 | 0.3361 | 0.8656 | | 0.3477 | 3.0 | 57 | 0.3272 | 0.8656 | | 0.3281 | 4.0 | 76 | 0.3129 | 0.8694 | | 0.308 | 5.0 | 95 | 0.2984 | 0.8732 | | 0.2821 | 6.0 | 114 | 0.3010 | 0.8694 | | 0.2763 | 7.0 | 133 | 0.2998 | 0.8771 | | 0.2607 | 8.0 | 152 | 0.2938 | 0.8720 | | 0.2502 | 9.0 | 171 | 0.2990 | 0.8732 | | 0.2337 | 10.0 | 190 | 0.2978 | 0.8758 | ### Framework versions - Transformers 4.43.3 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1