File size: 2,065 Bytes
df1f465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: mode_tuned_peft
  results: []
library_name: peft
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mode_tuned_peft

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5220
- Rouge1: 40.6099
- Rouge2: 20.4138
- Rougel: 31.1095
- Rougelsum: 37.6804
- Gen Len: 58.11

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.5144        | 1.0   | 14732 | 0.5494          | 39.171  | 19.3682 | 29.7493 | 36.2965   | 58.6773 |
| 0.5694        | 2.0   | 29464 | 0.5357          | 40.1584 | 20.0293 | 30.5791 | 37.1361   | 58.0648 |
| 0.3497        | 3.0   | 44196 | 0.5277          | 41.0391 | 20.7891 | 31.5244 | 38.1502   | 58.0086 |
| 0.3444        | 4.0   | 58928 | 0.5255          | 40.6698 | 20.543  | 31.2399 | 37.8126   | 58.3716 |
| 0.3495        | 5.0   | 73660 | 0.5220          | 40.6099 | 20.4138 | 31.1095 | 37.6804   | 58.11   |


### Framework versions

- PEFT 0.4.0
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1