--- base_model: gpt2 datasets: - wikimedia/wikipedia library_name: Distily license: mit tags: - bitnet - 1.58b - generated_from_trainer model-index: - name: verify_v0.3.0 results: [] --- # Summary Distilled with [Distily](https://github.com/lapp0/distily) library using teacher model [gpt2](https://huggingface.co./gpt2) on dataset [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia). # Model Architecture: - **Architecture**: `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 - **Data Type (dtype)**: torch.bfloat16 - **Model Size**: 0.24 GB # Benchmark Metrics Comparison | Metric | dataset_sample_size=1000 | teacher | | :--- | :--- | :--- | | ai2_arc (acc) | 0.225 | 0.304 | | ai2_arc (acc_norm) | 0.251 | 0.309 | | ai2_arc (acc_norm_stderr) | | 0.01 | | ai2_arc (acc_stderr) | | 0.01 | | arc_challenge (acc) | 0.182 | 0.184 | | arc_challenge (acc_norm) | 0.223 | 0.214 | | arc_challenge (acc_norm_stderr) | | 0.013 | | arc_challenge (acc_stderr) | | 0.012 | | arc_easy (acc) | 0.268 | 0.424 | | arc_easy (acc_norm) | 0.278 | 0.405 | | arc_easy (acc_norm_stderr) | | 0.016 | | arc_easy (acc_stderr) | | 0.016 | | boolq (acc) | 0.375 | 0.541 | | boolq (acc_stderr) | | 0.016 | | cola (mcc) | 0.0 | 0.009 | | cola (mcc_stderr) | | 0.032 | | glue (acc) | 0.477 | 0.41 | | glue (acc_stderr) | | 0.006 | | glue (f1) | 0.0 | 0.526 | | glue (f1_stderr) | | 0.014 | | glue (mcc) | 0.0 | 0.009 | | glue (mcc_stderr) | | 0.032 | | hellaswag (acc) | 0.287 | 0.337 | | hellaswag (acc_norm) | 0.269 | 0.384 | | hellaswag (acc_norm_stderr) | | 0.015 | | hellaswag (acc_stderr) | | 0.015 | | mnli (acc) | 0.335 | 0.323 | | mnli (acc_stderr) | | 0.015 | | mnli_mismatch (acc) | 0.357 | 0.344 | | mnli_mismatch (acc_stderr) | | 0.015 | | mrpc (acc) | 0.316 | 0.515 | | mrpc (acc_stderr) | | 0.025 | | mrpc (f1) | 0.0 | 0.631 | | mrpc (f1_stderr) | | 0.024 | | qnli (acc) | 0.527 | 0.472 | | qnli (acc_stderr) | | 0.016 | | qqp (acc) | 0.673 | 0.34 | | qqp (acc_stderr) | | 0.015 | | qqp (f1) | 0.0 | 0.483 | | qqp (f1_stderr) | | 0.017 | | rte (acc) | 0.527 | 0.516 | | rte (acc_stderr) | | 0.03 | | sst2 (acc) | 0.557 | 0.511 | | sst2 (acc_stderr) | | 0.017 | | wikitext (bits_per_byte) | 1.979 | | | wikitext (byte_perplexity) | 3.942 | | | wikitext (word_perplexity) | 1533.0 | | | wnli (acc) | 0.437 | 0.451 | | wnli (acc_stderr) | | 0.059 | # Resource Usage Comparison - VRAM Use: 7.4923 GB # Distillation (Teacher -> Student) Architecture Difference: - **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 -> 124,439,808 - **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16 - **Model Size**: 0.24 GB -> 0.24 GB
Module Diff Details ```diff ```

# Train Dataset Trained on 923,203 tokens from the [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia) dataset. - Num Samples: `990` - Subset: `20231101.en` - Split: `train` # Training Objective ``` DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl)) ``` # Hyperparameters The following hyperparameters were used during training:
Expand - learning_rate: `0.0001` - train_batch_size: `4` - eval_batch_size: `8` - seed: `42` - optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08` - lr_scheduler_type: `constant` - lr_scheduler_warmup_ratio: `0.2` - num_epochs: `1.0` - distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl))` - train_embeddings: `True` - lr_scheduler: `` - student_model_name_or_path: `None` - student_config_name_or_path: `None` - student_model_config: `None` - reinitialize_weights: `None` - copy_teacher_modules: `[('lm_head', False)]` - student_model_as_bitnet: `True` - student_model_compile: `False` - dropout: `None` - teacher_model_name_or_path: `gpt2` - teacher_load_in_8bit: `False` - teacher_load_in_4bit: `False` - teacher_model_compile: `False` - dataset_uri: `wikimedia/wikipedia` - dataset_subset: `20231101.en` - dataset_split: `train` - dataset_column_name: `text` - dataset_sample_size: `1000` - dataset_test_size: `0.01` - gradient_accumulation_steps: `1` - weight_decay: `0.0` - max_grad_norm: `1.0` - warmup_ratio: `0.2` - warmup_steps: `0` - gradient_checkpointing: `True`

# Framework Versions - Distily 0.3.0 - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.21.0