--- base_model: distilbert/distilgpt2 datasets: - wikimedia/wikipedia library_name: Distily license: apache-2.0 tags: - generated_from_trainer model-index: - name: distily_validate_extra_grad_stats5 results: [] --- # Summary Distilled with [Distily](https://github.com/lapp0/distily) library using teacher model [gpt2](https://huggingface.co./gpt2) on dataset [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia). # Model Architecture: - **Architecture**: `GPT2LMHeadModel` - **Total Parameters**: 81,912,576 - **Data Type (dtype)**: torch.bfloat16 - **Model Size**: 0.16 GB # Benchmark Metrics Comparison | Metric | | | :--- | # Resource Usage Comparison - VRAM Use: 7.4255 GB # Distillation (Teacher -> Student) Architecture Difference: - **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 -> 81,912,576 - **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16 - **Model Size**: 0.24 GB -> 0.16 GB
Module Diff Details ```diff --- teacher model modules +++ student model modules @@ -4,7 +4,7 @@ (wpe): Embedding(1024, 768) (drop): Dropout(p=0.1, inplace=False) (h): ModuleList( - (0-11): 12 x GPT2Block( + (0-5): 6 x GPT2Block( (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (attn): GPT2FlashAttention2( (c_attn): Conv1D() ```

# Train Dataset Trained on 6,814,337 tokens from the [wikimedia/wikipedia](https://huggingface.co./datasets/wikimedia/wikipedia) dataset. - Num Samples: `9,900` - Subset: `20231101.en` - Split: `train` # Training Objective ``` DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, projector=orthogonal)) ``` # Hyperparameters The following hyperparameters were used during training:
Expand - learning_rate: `0.0002` - train_batch_size: `4` - eval_batch_size: `8` - seed: `42` - optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08` - lr_scheduler_type: `polynomial` - num_epochs: `1.0` - distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, projector=orthogonal))` - lr_scheduler: `` - student_model_name_or_path: `None` - student_config_name_or_path: `distilbert/distilgpt2` - student_model_config: `None` - reinitialize_weights: `None` - copy_teacher_modules: `[('lm_head', False)]` - student_model_as_bitnet: `False` - teacher_model_name_or_path: `gpt2` - teacher_load_in_8bit: `False` - teacher_load_in_4bit: `False` - dataset_uri: `wikimedia/wikipedia` - dataset_subset: `20231101.en` - dataset_split: `train` - dataset_column_name: `text` - dataset_sample_size: `10000` - dataset_test_size: `0.01` - gradient_accumulation_steps: `1` - weight_decay: `0.0` - max_grad_norm: `1.0` - warmup_ratio: `0` - warmup_steps: `0` - gradient_checkpointing: `True`

# Framework Versions - Distily 0.4.1 - Transformers 4.44.2 - Pytorch 2.3.0 - Datasets 2.21.0