diogopaes10
commited on
Commit
•
a9bed40
1
Parent(s):
3fb26ef
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/MiniLM-L12-H384-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: 019-microsoft-MiniLM-finetuned-yahoo-80000_20000
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 019-microsoft-MiniLM-finetuned-yahoo-80000_20000
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8508
|
24 |
+
- F1: 0.7322
|
25 |
+
- Accuracy: 0.7357
|
26 |
+
- Precision: 0.7318
|
27 |
+
- Recall: 0.7357
|
28 |
+
- System Ram Used: 4.0900
|
29 |
+
- System Ram Total: 83.4807
|
30 |
+
- Gpu Ram Allocated: 0.3934
|
31 |
+
- Gpu Ram Cached: 16.0508
|
32 |
+
- Gpu Ram Total: 39.5640
|
33 |
+
- Gpu Utilization: 31
|
34 |
+
- Disk Space Used: 26.4706
|
35 |
+
- Disk Space Total: 78.1898
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 5
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|
65 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
|
66 |
+
| 1.5316 | 0.25 | 625 | 1.1302 | 0.6824 | 0.6928 | 0.6859 | 0.6928 | 4.1089 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 33 | 25.7180 | 78.1898 |
|
67 |
+
| 1.0615 | 0.5 | 1250 | 1.0022 | 0.7011 | 0.7049 | 0.7065 | 0.7049 | 3.8585 | 83.4807 | 0.3936 | 16.0508 | 39.5640 | 33 | 26.0913 | 78.1898 |
|
68 |
+
| 0.9804 | 0.75 | 1875 | 0.9258 | 0.7158 | 0.7191 | 0.7201 | 0.7191 | 3.8640 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 33 | 26.4646 | 78.1898 |
|
69 |
+
| 0.9244 | 1.0 | 2500 | 0.8795 | 0.7219 | 0.7286 | 0.7266 | 0.7286 | 3.8815 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 32 | 26.4649 | 78.1898 |
|
70 |
+
| 0.8471 | 1.25 | 3125 | 0.8886 | 0.7243 | 0.7305 | 0.7280 | 0.7305 | 4.0318 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 31 | 26.4653 | 78.1898 |
|
71 |
+
| 0.8294 | 1.5 | 3750 | 0.8648 | 0.7285 | 0.7303 | 0.7304 | 0.7303 | 3.8228 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 33 | 26.4656 | 78.1898 |
|
72 |
+
| 0.8229 | 1.75 | 4375 | 0.8477 | 0.7306 | 0.7347 | 0.7314 | 0.7347 | 3.8704 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 32 | 26.4658 | 78.1898 |
|
73 |
+
| 0.8227 | 2.0 | 5000 | 0.8514 | 0.7300 | 0.7321 | 0.7343 | 0.7321 | 3.8656 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 34 | 26.4661 | 78.1898 |
|
74 |
+
| 0.7515 | 2.25 | 5625 | 0.8580 | 0.7286 | 0.7327 | 0.7324 | 0.7327 | 4.0576 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 32 | 26.4664 | 78.1898 |
|
75 |
+
| 0.7523 | 2.5 | 6250 | 0.8498 | 0.7296 | 0.734 | 0.7314 | 0.734 | 3.8656 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 32 | 26.4666 | 78.1898 |
|
76 |
+
| 0.7396 | 2.75 | 6875 | 0.8403 | 0.7326 | 0.7365 | 0.7323 | 0.7365 | 3.8686 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 33 | 26.4669 | 78.1898 |
|
77 |
+
| 0.7308 | 3.0 | 7500 | 0.8414 | 0.7348 | 0.7378 | 0.7339 | 0.7378 | 3.8611 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 26 | 26.4671 | 78.1898 |
|
78 |
+
| 0.6929 | 3.25 | 8125 | 0.8551 | 0.7322 | 0.7350 | 0.7376 | 0.7350 | 4.0565 | 83.4807 | 0.3936 | 16.0508 | 39.5640 | 29 | 26.4680 | 78.1898 |
|
79 |
+
| 0.6772 | 3.5 | 8750 | 0.8471 | 0.7335 | 0.738 | 0.7327 | 0.738 | 3.8351 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 31 | 26.4684 | 78.1898 |
|
80 |
+
| 0.682 | 3.75 | 9375 | 0.8460 | 0.7311 | 0.735 | 0.7311 | 0.735 | 3.8782 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 34 | 26.4686 | 78.1898 |
|
81 |
+
| 0.6741 | 4.0 | 10000 | 0.8409 | 0.7335 | 0.7376 | 0.7330 | 0.7376 | 3.8848 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 31 | 26.4690 | 78.1898 |
|
82 |
+
| 0.6247 | 4.25 | 10625 | 0.8500 | 0.7332 | 0.736 | 0.7324 | 0.736 | 4.0838 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 32 | 26.4694 | 78.1898 |
|
83 |
+
| 0.6446 | 4.5 | 11250 | 0.8464 | 0.7323 | 0.7358 | 0.7320 | 0.7358 | 3.8687 | 83.4807 | 0.3936 | 16.0508 | 39.5640 | 31 | 26.4697 | 78.1898 |
|
84 |
+
| 0.6355 | 4.75 | 11875 | 0.8503 | 0.7311 | 0.7349 | 0.7308 | 0.7349 | 3.8853 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 30 | 26.4700 | 78.1898 |
|
85 |
+
| 0.6396 | 5.0 | 12500 | 0.8508 | 0.7322 | 0.7357 | 0.7318 | 0.7357 | 3.8995 | 83.4807 | 0.3935 | 16.0508 | 39.5640 | 33 | 26.4704 | 78.1898 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.31.0
|
91 |
+
- Pytorch 2.0.1+cu118
|
92 |
+
- Datasets 2.13.1
|
93 |
+
- Tokenizers 0.13.3
|