--- license: mit base_model: microsoft/MiniLM-L12-H384-uncased tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: 017-microsoft-MiniLM-finetuned-yahoo-800_200 results: [] --- # 017-microsoft-MiniLM-finetuned-yahoo-800_200 This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co./microsoft/MiniLM-L12-H384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4048 - F1: 0.6237 - Accuracy: 0.63 - Precision: 0.6273 - Recall: 0.63 - System Ram Used: 3.8778 - System Ram Total: 83.4807 - Gpu Ram Allocated: 0.3903 - Gpu Ram Cached: 12.8340 - Gpu Ram Total: 39.5640 - Gpu Utilization: 32 - Disk Space Used: 25.4337 - Disk Space Total: 78.1898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:| | 2.3021 | 1.28 | 32 | 2.2975 | 0.0519 | 0.12 | 0.1102 | 0.12 | 3.8424 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 29 | 24.5606 | 78.1898 | | 2.2615 | 2.56 | 64 | 2.1926 | 0.2339 | 0.31 | 0.4649 | 0.31 | 3.8514 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 30 | 24.5606 | 78.1898 | | 2.0677 | 3.84 | 96 | 1.9658 | 0.4301 | 0.51 | 0.3950 | 0.51 | 3.8537 | 83.4807 | 0.3905 | 12.8340 | 39.5640 | 22 | 24.5606 | 78.1898 | | 1.8562 | 5.12 | 128 | 1.8383 | 0.4655 | 0.545 | 0.4587 | 0.545 | 3.8574 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 41 | 24.5606 | 78.1898 | | 1.6929 | 6.4 | 160 | 1.7403 | 0.4942 | 0.555 | 0.5261 | 0.555 | 3.8549 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 29 | 24.5607 | 78.1898 | | 1.5569 | 7.68 | 192 | 1.6663 | 0.5467 | 0.585 | 0.6496 | 0.585 | 3.8549 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 37 | 24.5607 | 78.1898 | | 1.4636 | 8.96 | 224 | 1.6123 | 0.5475 | 0.58 | 0.5539 | 0.58 | 3.8539 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 30 | 24.5607 | 78.1898 | | 1.3683 | 10.24 | 256 | 1.5615 | 0.5829 | 0.595 | 0.6016 | 0.595 | 3.8527 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 41 | 24.5607 | 78.1898 | | 1.2649 | 11.52 | 288 | 1.5261 | 0.5904 | 0.61 | 0.6243 | 0.61 | 3.8646 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 30 | 24.5607 | 78.1898 | | 1.1968 | 12.8 | 320 | 1.4976 | 0.6012 | 0.615 | 0.6070 | 0.615 | 3.8766 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 45 | 24.5607 | 78.1898 | | 1.1291 | 14.08 | 352 | 1.4756 | 0.5983 | 0.615 | 0.6164 | 0.615 | 3.8749 | 83.4807 | 0.3905 | 12.8340 | 39.5640 | 47 | 24.5607 | 78.1898 | | 1.0673 | 15.36 | 384 | 1.4660 | 0.6064 | 0.62 | 0.6258 | 0.62 | 3.8752 | 83.4807 | 0.3907 | 12.8340 | 39.5640 | 35 | 24.5607 | 78.1898 | | 0.9884 | 16.64 | 416 | 1.4410 | 0.6135 | 0.625 | 0.6204 | 0.625 | 3.8757 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 33 | 24.5608 | 78.1898 | | 0.9743 | 17.92 | 448 | 1.4328 | 0.6233 | 0.635 | 0.6343 | 0.635 | 3.8747 | 83.4807 | 0.3905 | 12.8340 | 39.5640 | 44 | 24.5608 | 78.1898 | | 0.926 | 19.2 | 480 | 1.4344 | 0.6088 | 0.615 | 0.6238 | 0.615 | 3.8742 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 31 | 24.5608 | 78.1898 | | 0.8815 | 20.48 | 512 | 1.4282 | 0.6235 | 0.625 | 0.6350 | 0.625 | 4.0591 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 43 | 25.4337 | 78.1898 | | 0.8613 | 21.76 | 544 | 1.4146 | 0.6329 | 0.635 | 0.6408 | 0.635 | 4.0655 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 26 | 25.4337 | 78.1898 | | 0.8466 | 23.04 | 576 | 1.4086 | 0.6318 | 0.635 | 0.6415 | 0.635 | 4.0544 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 35 | 25.4337 | 78.1898 | | 0.8282 | 24.32 | 608 | 1.4058 | 0.6243 | 0.63 | 0.6319 | 0.63 | 3.8886 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 27 | 25.4337 | 78.1898 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3