File size: 6,527 Bytes
0dfc416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: 011-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 011-microsoft-deberta-v3-base-finetuned-yahoo-8000_2000

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co./microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8660
- F1: 0.7055
- Accuracy: 0.7045
- Precision: 0.7076
- Recall: 0.7045
- System Ram Used: 4.2773
- System Ram Total: 83.4807
- Gpu Ram Allocated: 2.0897
- Gpu Ram Cached: 25.8555
- Gpu Ram Total: 39.5640
- Gpu Utilization: 48
- Disk Space Used: 35.8287
- Disk Space Total: 78.1898

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
| 1.6916        | 0.75  | 188  | 1.1063          | 0.6708 | 0.6755   | 0.6900    | 0.6755 | 4.0191          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 50              | 24.8064         | 78.1898          |
| 0.9694        | 1.5   | 376  | 0.9586          | 0.7181 | 0.7195   | 0.7198    | 0.7195 | 4.2536          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 50              | 29.6418         | 78.1898          |
| 0.8509        | 2.26  | 564  | 0.9748          | 0.7070 | 0.712    | 0.7161    | 0.712  | 4.1602          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 46              | 29.6418         | 78.1898          |
| 0.7475        | 3.01  | 752  | 0.9447          | 0.7122 | 0.714    | 0.7148    | 0.714  | 4.1607          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 50              | 29.6420         | 78.1898          |
| 0.5841        | 3.76  | 940  | 1.0064          | 0.7077 | 0.711    | 0.7225    | 0.711  | 4.1889          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 47              | 29.6420         | 78.1898          |
| 0.4972        | 4.51  | 1128 | 1.0585          | 0.7110 | 0.714    | 0.7129    | 0.714  | 4.1766          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 47              | 29.6421         | 78.1898          |
| 0.4555        | 5.26  | 1316 | 1.1175          | 0.7086 | 0.7075   | 0.7151    | 0.7075 | 4.2257          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 46              | 33.7652         | 78.1898          |
| 0.3535        | 6.02  | 1504 | 1.1749          | 0.7032 | 0.708    | 0.7077    | 0.708  | 4.2302          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 50              | 33.7653         | 78.1898          |
| 0.2614        | 6.77  | 1692 | 1.2028          | 0.7056 | 0.709    | 0.7079    | 0.709  | 4.2376          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 49              | 33.7654         | 78.1898          |
| 0.2321        | 7.52  | 1880 | 1.2961          | 0.7019 | 0.698    | 0.7085    | 0.698  | 4.2248          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 49              | 33.7656         | 78.1898          |
| 0.197         | 8.27  | 2068 | 1.3960          | 0.7098 | 0.712    | 0.7137    | 0.712  | 4.2194          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 45              | 33.7657         | 78.1898          |
| 0.1505        | 9.02  | 2256 | 1.4310          | 0.7093 | 0.7075   | 0.7133    | 0.7075 | 4.2418          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 48              | 35.8277         | 78.1898          |
| 0.1132        | 9.78  | 2444 | 1.5454          | 0.7053 | 0.7045   | 0.7097    | 0.7045 | 4.2931          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 48              | 35.8278         | 78.1898          |
| 0.0979        | 10.53 | 2632 | 1.6420          | 0.7090 | 0.708    | 0.7171    | 0.708  | 4.2793          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 45              | 35.8281         | 78.1898          |
| 0.0818        | 11.28 | 2820 | 1.6869          | 0.7062 | 0.7065   | 0.7102    | 0.7065 | 4.2822          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 49              | 35.8281         | 78.1898          |
| 0.062         | 12.03 | 3008 | 1.7818          | 0.7043 | 0.701    | 0.7123    | 0.701  | 4.2864          | 83.4807          | 2.0901            | 25.8555        | 39.5640       | 50              | 35.8282         | 78.1898          |
| 0.0433        | 12.78 | 3196 | 1.7981          | 0.7080 | 0.707    | 0.7110    | 0.707  | 4.2666          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 49              | 35.8282         | 78.1898          |
| 0.0368        | 13.54 | 3384 | 1.8403          | 0.7079 | 0.7055   | 0.7131    | 0.7055 | 4.2783          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 47              | 35.8285         | 78.1898          |
| 0.0379        | 14.29 | 3572 | 1.8536          | 0.7052 | 0.705    | 0.7074    | 0.705  | 4.3013          | 83.4807          | 2.0898            | 25.8555        | 39.5640       | 47              | 35.8286         | 78.1898          |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3