import torch class RandomLatentImage: def __init__(self, device="cpu"): self.device = device @classmethod def INPUT_TYPES(s): return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}} RETURN_TYPES = ("LATENT",) FUNCTION = "generate" CATEGORY = "latent" def generate(self, width, height, batch_size=1): latent = torch.randn(batch_size, 4, height // 8, width // 8) return ({"samples":latent}, )