#!/usr/bin/env python3 import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image from controlnet_aux import NormalBaeDetector from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) import sys checkpoint = sys.argv[1] url = "https://github.com/lllyasviel/ControlNet-v1-1-nightly/raw/main/test_imgs/person-leaves.png" image = load_image(url) prompt = "A head full of roses" processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators") image = processor(image) controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.manual_seed(33) out_image = pipe(prompt, num_inference_steps=20, generator=generator, image=image).images[0] path = os.path.join(Path.home(), "images", "aa.png") out_image.save(path) api = HfApi() api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print("https://huggingface.co./datasets/patrickvonplaten/images/blob/main/aa.png")