#!/usr/bin/env python3 from diffusers import DiffusionPipeline from huggingface_hub import HfApi import os from pathlib import Path from compel import Compel import torch api = HfApi() pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", variant="fp16", use_safetensors=True, torch_dtype=torch.float16).to("cuda") compel = Compel(tokenizer=[pipeline.tokenizer, pipeline.tokenizer_2] , text_encoder=[pipeline.text_encoder, pipeline.text_encoder_2], use_penultimate_clip_layer=True, use_penultimate_layer_norm=False, requires_pooled=[False, True]) # upweight "ball" prompt = "a cat playing with a ball-- in the forest" conditioning, pooled = compel(prompt) # generate image image = pipeline(prompt_embeds=conditioning, pooled_prompt_embeds=pooled, num_inference_steps=30).images[0] file_name = f"ball_minus_minus" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co./datasets/patrickvonplaten/images/blob/main/{file_name}.png")