#!/usr/bin/env python3 from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting from diffusers.utils import load_image from pathlib import Path import torch import numpy as np import requests from io import BytesIO from PIL import Image from huggingface_hub import HfApi import os api = HfApi() url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) original_image = Image.open(BytesIO(response.content)).convert("RGB") original_image = original_image.resize((768, 512)) original_image = load_image( "https://huggingface.co./datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) mask = np.ones((768, 768), dtype=np.float32) # Let's mask out an area above the cat's head mask[:250, 250:-250] = 0 # pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) # pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) # pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) # pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16) # pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" negative_prompt = "" prompt = "A fantasy landscape, Cinematic lighting" prompt = "a hat" negative_prompt = "low quality, bad quality" # rompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"] # prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts]) # generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])] # # url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" # response = requests.get(url) # image = Image.open(BytesIO(response.content)).convert("RGB") # image.thumbnail((768, 768)) generator = torch.Generator(device="cpu").manual_seed(0) # images = pipe(prompt=prompt, generator=generator, num_images_per_prompt=1, num_inference_steps=25).images # images = pipe(prompt=prompt, image=original_image, generator=generator, num_images_per_prompt=1, num_inference_steps=25).images images = pipe(prompt=prompt, image=original_image, mask_image=mask, generator=generator, num_images_per_prompt=1, num_inference_steps=25).images for i, image in enumerate(images): file_name = f"bb_1_{i}" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co./datasets/patrickvonplaten/images/blob/main/{file_name}.png")