#!/usr/bin/env python3 #!/usr/bin/env python3 from diffusers import DiffusionPipeline import torch import time import os from pathlib import Path from huggingface_hub import HfApi api = HfApi() start_time = time.time() pipe = DiffusionPipeline.from_pretrained("/home/patrick/if", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_model_cpu_offload() generator = torch.Generator("cuda").manual_seed(0) prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"' image = pipe(prompt, generator=generator).images[0] path = os.path.join(Path.home(), "images", "if.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co./datasets/patrickvonplaten/images/blob/main/if.png")