#!/usr/bin/env python3 from diffusers import StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler import time import os from huggingface_hub import HfApi # from compel import Compel import torch import sys from pathlib import Path import requests from PIL import Image from io import BytesIO path = sys.argv[1] api = HfApi() start_time = time.time() pipe = StableDiffusionPipeline.from_ckpt(path, torch_dtype=torch.float16) import ipdb; ipdb.set_trace() pipe = pipe.to("cuda") prompt = "A lion in galaxies, spirals, nebulae, stars, smoke, iridescent, intricate detail, octane render, 8k" # rompts = ["a cat playing with a ball++ in the forest", "a cat playing with a ball++ in the forest", "a cat playing with a ball-- in the forest"] # prompt_embeds = torch.cat([compel.build_conditioning_tensor(prompt) for prompt in prompts]) # generator = [torch.Generator(device="cuda").manual_seed(0) for _ in range(prompt_embeds.shape[0])] # # url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" # # response = requests.get(url) # image = Image.open(BytesIO(response.content)).convert("RGB") # image.thumbnail((768, 768)) # for TIMESTEP_TYPE in ["trailing", "leading"]: for RESCALE_BETAS_ZEROS_SNR in [True, False]: for GUIDANCE_RESCALE in [0,0, 0.7]: pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing=TIMESTEP_TYPE, rescale_betas_zero_snr=RESCALE_BETAS_ZEROS_SNR) generator = torch.Generator(device="cpu").manual_seed(0) images = pipe(prompt=prompt, generator=generator, num_images_per_prompt=4, num_inference_steps=40, guidance_rescale=GUIDANCE_RESCALE).images for i, image in enumerate(images): file_name = f"bb_{i}_{TIMESTEP_TYPE}_{str(int(RESCALE_BETAS_ZEROS_SNR))}_{GUIDANCE_RESCALE}" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co./datasets/patrickvonplaten/images/blob/main/{file_name}.png")