# Diffusers Tools This is a collection of scripts that can be useful for various tasks related to the [diffusers library](https://github.com/huggingface/diffusers) ## 1. Test against original checkpoints **It's very important to have visually the exact same results as the original code bases.!** E.g. to make use `diffusers` is identical to the original [CompVis codebase](https://github.com/CompVis/stable-diffusion), you can run the following script in the original CompVis codebase: 1. Download the original [SD-1-4 checkpoint](https://huggingface.co./CompVis/stable-diffusion-v1-4) and put it in the correct folder following the instructions on: https://github.com/CompVis/stable-diffusion 2. Run the following command ``` python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1 ``` and compare this to the same command in diffusers: ```python from diffusers import DiffusionPipeline, StableDiffusionPipeline, DDIMScheduler import torch # python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1 seed = 0 prompt = "a photograph of an astronaut riding a horse" pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe = pipe.to("cuda") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) torch.manual_seed(0) image = pipe(prompt, num_inference_steps=50).images[0] image.save("/home/patrick_huggingface_co/images/aa_comp.png") ``` Both commands should give the following image on a V100: ## 2. Test against [k-diffusion](https://github.com/crowsonkb/k-diffusion): You can run the following script to compare against k-diffusion. See results [here](https://huggingface.co./datasets/patrickvonplaten/images) ```python from diffusers import StableDiffusionKDiffusionPipeline, HeunDiscreteScheduler, StableDiffusionPipeline, DPMSolverMultistepScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler import torch import os seed = 13 inference_steps = 25 #checkpoint = "CompVis/stable-diffusion-v1-4" checkpoint = "stabilityai/stable-diffusion-2-1" prompts = ["astronaut riding horse", "whale falling from sky", "magical forest", "highly photorealistic picture of johnny depp"] prompts = 8 * ["highly photorealistic picture of johnny depp"] #prompts = prompts[:1] samplers = ["sample_dpmpp_2m", "sample_euler", "sample_heun", "sample_dpm_2", "sample_lms"] #samplers = samplers[:1] pipe = StableDiffusionKDiffusionPipeline.from_pretrained(checkpoint, torch_dtype=torch.float16, safety_checker=None) pipe = pipe.to("cuda") for i, prompt in enumerate(prompts): prompt_f = f"{'_'.join(prompt.split())}_{i}" for sampler in samplers: pipe.set_scheduler(sampler) torch.manual_seed(seed + i) image = pipe(prompt, num_inference_steps=inference_steps).images[0] checkpoint_f = f"{'--'.join(checkpoint.split('/'))}" os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True) os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True) image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}.png") pipe = StableDiffusionPipeline(**pipe.components) pipe = pipe.to("cuda") for i, prompt in enumerate(prompts): prompt_f = f"{'_'.join(prompt.split())}_{i}" for sampler in samplers: if sampler == "sample_euler": pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) elif sampler == "sample_heun": pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) elif sampler == "sample_dpmpp_2m": pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) elif sampler == "sample_lms": pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) torch.manual_seed(seed + i) image = pipe(prompt, num_inference_steps=inference_steps).images[0] checkpoint_f = f"{'--'.join(checkpoint.split('/'))}" os.makedirs("/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True) os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True) image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}_hf.png") ```