patrickvonplaten commited on
Commit
d938da0
·
1 Parent(s): 912b6df

upload new config changer

Browse files
Files changed (1) hide show
  1. adapt_config.py +28 -46
adapt_config.py CHANGED
@@ -43,17 +43,22 @@ def is_index_stable_diffusion_like(config_dict):
43
 
44
 
45
  def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]:
46
- config_file = "scheduler/scheduler_config.json"
47
- os.makedirs(os.path.join(folder, "scheduler"), exist_ok=True)
48
  model_index_file = hf_hub_download(repo_id=model_id, filename="model_index.json")
49
 
50
  with open(model_index_file, "r") as f:
51
  index_dict = json.load(f)
52
- if not is_index_stable_diffusion_like(index_dict):
53
- print(f"{model_id} is not of type stable diffusion.")
54
  return False, False
55
 
56
- old_config_file = hf_hub_download(repo_id=model_id, filename=config_file)
 
 
 
 
 
57
 
58
  new_config_file = os.path.join(folder, config_file)
59
  success = convert_file(old_config_file, new_config_file)
@@ -72,45 +77,18 @@ def convert_file(
72
  with open(old_config, "r") as f:
73
  old_dict = json.load(f)
74
 
75
- if "clip_sample" not in old_dict:
76
- print("Make scheduler DDIM compatible")
77
- old_dict["clip_sample"] = False
78
- else:
79
- print("No matching config")
80
- return False
 
81
 
82
- # is_stable_diffusion = "down_block_types" in old_dict and list(old_dict["down_block_types"]) == ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]
83
- #
84
- # is_stable_diffusion_1 = is_stable_diffusion and ("use_linear_projection" not in old_dict or old_dict["use_linear_projection"] is False)
85
- # is_stable_diffusion_2 = is_stable_diffusion and ("use_linear_projection" in old_dict and old_dict["use_linear_projection"] is True)
86
- #
87
- # if not is_stable_diffusion_1 and not is_stable_diffusion_2:
88
- # print("No matching config")
89
- # return False
90
- #
91
- # if is_stable_diffusion_1:
92
- # if old_dict["sample_size"] == 64:
93
- # print("Dict correct")
94
- # return False
95
- #
96
- # print("Correct stable diffusion 1")
97
- # old_dict["sample_size"] = 64
98
- #
99
- # if is_stable_diffusion_2:
100
- # if old_dict["sample_size"] == 96:
101
- # print("Dict correct")
102
- # return False
103
- #
104
- # print("Correct stable diffusion 2")
105
- # old_dict["sample_size"] = 96
106
- #
107
  with open(new_config, 'w') as f:
108
  json_str = json.dumps(old_dict, indent=2, sort_keys=True) + "\n"
109
  f.write(json_str)
110
 
111
- #
112
- # return "Stable Diffusion 1" if is_stable_diffusion_1 else "Stable Diffusion 2"
113
-
114
  return "Stable Diffusion"
115
 
116
 
@@ -126,17 +104,17 @@ def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discuss
126
 
127
  def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]:
128
  # pr_title = "Correct `sample_size` of {}'s unet to have correct width and height default"
129
- pr_title = "Add `clip_sample=False` to scheduler to make model compatible with DDIM."
130
  info = api.model_info(model_id)
131
  filenames = set(s.rfilename for s in info.siblings)
132
 
133
- if "unet/config.json" not in filenames:
134
- print(f"Model: {model_id} has no 'unet/config.json' file to change")
135
  return
136
 
137
- if "vae/config.json" not in filenames:
138
- print(f"Model: {model_id} has no 'vae/config.json' file to change")
139
- return
140
 
141
  with TemporaryDirectory() as d:
142
  folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
@@ -166,7 +144,11 @@ def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["Commi
166
  # )
167
  contributor = model_id.split("/")[0]
168
  pr_description = (
169
- f"Hey {contributor} 👋, \n\n Your model repository seems to contain a stable diffusion checkpoint. We have noticed that your scheduler config currently does not correctly work with the [DDIMScheduler](https://huggingface.co/docs/diffusers/main/en/api/schedulers#diffusers.DDIMScheduler) because `clip_sample` is not set to False and will therefore [incorrectly default to True](https://github.com/huggingface/diffusers/blob/3ce6380d3a2ec5c3e3f4f48889d380d657b151bc/src/diffusers/schedulers/scheduling_ddim.py#L127). \n The official stable diffusion checkpoints have `clip_sample=False` so that the scheduler config works will **all** schedulers, see: https://huggingface.co/stabilityai/stable-diffusion-2-1-base/blob/main/scheduler/scheduler_config.json#L7. \n\n We strongly recommend that you merge this PR to make sure your model works correctly with DDIM. \n\n Diffusingly, \n Patrick."
 
 
 
 
170
  )
171
  new_pr = api.create_commit(
172
  repo_id=model_id,
 
43
 
44
 
45
  def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]:
46
+ config_file = "model_index.json"
47
+ # os.makedirs(os.path.join(folder, "scheduler"), exist_ok=True)
48
  model_index_file = hf_hub_download(repo_id=model_id, filename="model_index.json")
49
 
50
  with open(model_index_file, "r") as f:
51
  index_dict = json.load(f)
52
+ if index_dict.get("feature_extractor", None) is None:
53
+ print(f"{model_id} has no feature extractor")
54
  return False, False
55
 
56
+ if index_dict["feature_extractor"][-1] != "CLIPFeatureExtractor":
57
+ print(f"{model_id} is not out of date or is not CLIP")
58
+ return False, False
59
+
60
+ # old_config_file = hf_hub_download(repo_id=model_id, filename=config_file)
61
+ old_config_file = model_index_file
62
 
63
  new_config_file = os.path.join(folder, config_file)
64
  success = convert_file(old_config_file, new_config_file)
 
77
  with open(old_config, "r") as f:
78
  old_dict = json.load(f)
79
 
80
+ old_dict["feature_extractor"][-1] = "CLIPImageProcessor"
81
+ # if "clip_sample" not in old_dict:
82
+ # print("Make scheduler DDIM compatible")
83
+ # old_dict["clip_sample"] = False
84
+ # else:
85
+ # print("No matching config")
86
+ # return False
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  with open(new_config, 'w') as f:
89
  json_str = json.dumps(old_dict, indent=2, sort_keys=True) + "\n"
90
  f.write(json_str)
91
 
 
 
 
92
  return "Stable Diffusion"
93
 
94
 
 
104
 
105
  def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]:
106
  # pr_title = "Correct `sample_size` of {}'s unet to have correct width and height default"
107
+ pr_title = "Fix deprecation warning by changing `CLIPFeatureExtractor` to `CLIPImageProcessor`."
108
  info = api.model_info(model_id)
109
  filenames = set(s.rfilename for s in info.siblings)
110
 
111
+ if "model_index.json" not in filenames:
112
+ print(f"Model: {model_id} has no model_index.json file to change")
113
  return
114
 
115
+ # if "vae/config.json" not in filenames:
116
+ # print(f"Model: {model_id} has no 'vae/config.json' file to change")
117
+ # return
118
 
119
  with TemporaryDirectory() as d:
120
  folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
 
144
  # )
145
  contributor = model_id.split("/")[0]
146
  pr_description = (
147
+ f"Hey {contributor} 👋, \n\n Your model repository seems to contain logic to load a feature extractor that is deprecated, which you should notice by seeing the warning: "
148
+ "\n\n ```\ntransformers/models/clip/feature_extraction_clip.py:28: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. "
149
+ f"Please use CLIPImageProcessor instead. warnings.warn(\n``` \n\n when running `pipe = DiffusionPipeline.from_pretrained({model_id})`."
150
+ "This PR makes sure that the warning does not show anymore by replacing `CLIPFeatureExtractor` with `CLIPImageProcessor`. This will certainly not change or break your checkpoint, but only"
151
+ "make sure that everything is up to date. \n\n Best, the 🧨 Diffusers team."
152
  )
153
  new_pr = api.create_commit(
154
  repo_id=model_id,