patrickvonplaten
commited on
Commit
·
d7c590b
1
Parent(s):
f56edba
uP
Browse files- convert_flax_to_pt.py +5 -148
- parti_prompts.py +2 -2
convert_flax_to_pt.py
CHANGED
@@ -2,109 +2,16 @@ import argparse
|
|
2 |
import json
|
3 |
import os
|
4 |
import shutil
|
|
|
5 |
from tempfile import TemporaryDirectory
|
6 |
from typing import List, Optional
|
|
|
7 |
|
8 |
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
|
9 |
from huggingface_hub.file_download import repo_folder_name
|
10 |
|
11 |
|
12 |
-
class AlreadyExists(Exception):
|
13 |
-
pass
|
14 |
-
|
15 |
-
|
16 |
-
def is_index_stable_diffusion_like(config_dict):
|
17 |
-
if "_class_name" not in config_dict:
|
18 |
-
return False
|
19 |
-
|
20 |
-
compatible_classes = [
|
21 |
-
"AltDiffusionImg2ImgPipeline",
|
22 |
-
"AltDiffusionPipeline",
|
23 |
-
"CycleDiffusionPipeline",
|
24 |
-
"StableDiffusionImageVariationPipeline",
|
25 |
-
"StableDiffusionImg2ImgPipeline",
|
26 |
-
"StableDiffusionInpaintPipeline",
|
27 |
-
"StableDiffusionInpaintPipelineLegacy",
|
28 |
-
"StableDiffusionPipeline",
|
29 |
-
"StableDiffusionPipelineSafe",
|
30 |
-
"StableDiffusionUpscalePipeline",
|
31 |
-
"VersatileDiffusionDualGuidedPipeline",
|
32 |
-
"VersatileDiffusionImageVariationPipeline",
|
33 |
-
"VersatileDiffusionPipeline",
|
34 |
-
"VersatileDiffusionTextToImagePipeline",
|
35 |
-
"OnnxStableDiffusionImg2ImgPipeline",
|
36 |
-
"OnnxStableDiffusionInpaintPipeline",
|
37 |
-
"OnnxStableDiffusionInpaintPipelineLegacy",
|
38 |
-
"OnnxStableDiffusionPipeline",
|
39 |
-
"StableDiffusionOnnxPipeline",
|
40 |
-
"FlaxStableDiffusionPipeline",
|
41 |
-
]
|
42 |
-
return config_dict["_class_name"] in compatible_classes
|
43 |
-
|
44 |
-
|
45 |
-
def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]:
|
46 |
-
config_file = "model_index.json"
|
47 |
-
# os.makedirs(os.path.join(folder, "scheduler"), exist_ok=True)
|
48 |
-
model_index_file = hf_hub_download(repo_id=model_id, filename="model_index.json")
|
49 |
-
|
50 |
-
with open(model_index_file, "r") as f:
|
51 |
-
index_dict = json.load(f)
|
52 |
-
if index_dict.get("feature_extractor", None) is None:
|
53 |
-
print(f"{model_id} has no feature extractor")
|
54 |
-
return False, False
|
55 |
-
|
56 |
-
if index_dict["feature_extractor"][-1] != "CLIPFeatureExtractor":
|
57 |
-
print(f"{model_id} is not out of date or is not CLIP")
|
58 |
-
return False, False
|
59 |
-
|
60 |
-
# old_config_file = hf_hub_download(repo_id=model_id, filename=config_file)
|
61 |
-
old_config_file = model_index_file
|
62 |
-
|
63 |
-
new_config_file = os.path.join(folder, config_file)
|
64 |
-
success = convert_file(old_config_file, new_config_file)
|
65 |
-
if success:
|
66 |
-
operations = [CommitOperationAdd(path_in_repo=config_file, path_or_fileobj=new_config_file)]
|
67 |
-
model_type = success
|
68 |
-
return operations, model_type
|
69 |
-
else:
|
70 |
-
return False, False
|
71 |
-
|
72 |
-
|
73 |
-
def convert_file(
|
74 |
-
old_config: str,
|
75 |
-
new_config: str,
|
76 |
-
):
|
77 |
-
with open(old_config, "r") as f:
|
78 |
-
old_dict = json.load(f)
|
79 |
-
|
80 |
-
old_dict["feature_extractor"][-1] = "CLIPImageProcessor"
|
81 |
-
# if "clip_sample" not in old_dict:
|
82 |
-
# print("Make scheduler DDIM compatible")
|
83 |
-
# old_dict["clip_sample"] = False
|
84 |
-
# else:
|
85 |
-
# print("No matching config")
|
86 |
-
# return False
|
87 |
-
|
88 |
-
with open(new_config, 'w') as f:
|
89 |
-
json_str = json.dumps(old_dict, indent=2, sort_keys=True) + "\n"
|
90 |
-
f.write(json_str)
|
91 |
-
|
92 |
-
return "Stable Diffusion"
|
93 |
-
|
94 |
-
|
95 |
-
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
|
96 |
-
try:
|
97 |
-
discussions = api.get_repo_discussions(repo_id=model_id)
|
98 |
-
except Exception:
|
99 |
-
return None
|
100 |
-
for discussion in discussions:
|
101 |
-
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
|
102 |
-
return discussion
|
103 |
-
|
104 |
-
|
105 |
def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]:
|
106 |
-
# pr_title = "Correct `sample_size` of {}'s unet to have correct width and height default"
|
107 |
-
pr_title = "Fix deprecation warning by changing `CLIPFeatureExtractor` to `CLIPImageProcessor`."
|
108 |
info = api.model_info(model_id)
|
109 |
filenames = set(s.rfilename for s in info.siblings)
|
110 |
|
@@ -134,54 +41,9 @@ def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["Commi
|
|
134 |
folder_path=folder,
|
135 |
repo_id=model_id,
|
136 |
repo_type="model",
|
|
|
137 |
)
|
138 |
-
)
|
139 |
-
|
140 |
-
new_pr = None
|
141 |
-
try:
|
142 |
-
operations = None
|
143 |
-
pr = previous_pr(api, model_id, pr_title)
|
144 |
-
if pr is not None and not force:
|
145 |
-
url = f"https://huggingface.co/{model_id}/discussions/{pr.num}"
|
146 |
-
new_pr = pr
|
147 |
-
raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
|
148 |
-
else:
|
149 |
-
operations, model_type = convert_single(model_id, folder)
|
150 |
-
|
151 |
-
if operations:
|
152 |
-
pr_title = pr_title.format(model_type)
|
153 |
-
# if model_type == "Stable Diffusion 1":
|
154 |
-
# sample_size = 64
|
155 |
-
# image_size = 512
|
156 |
-
# elif model_type == "Stable Diffusion 2":
|
157 |
-
# sample_size = 96
|
158 |
-
# image_size = 768
|
159 |
-
|
160 |
-
# pr_description = (
|
161 |
-
# f"Since `diffusers==0.9.0` the width and height is automatically inferred from the `sample_size` attribute of your unet's config. It seems like your diffusion model has the same architecture as {model_type} which means that when using this model, by default an image size of {image_size}x{image_size} should be generated. This in turn means the unet's sample size should be **{sample_size}**. \n\n In order to suppress to update your configuration on the fly and to suppress the deprecation warning added in this PR: https://github.com/huggingface/diffusers/pull/1406/files#r1035703505 it is strongly recommended to merge this PR."
|
162 |
-
# )
|
163 |
-
contributor = model_id.split("/")[0]
|
164 |
-
pr_description = (
|
165 |
-
f"Hey {contributor} 👋, \n\n Your model repository seems to contain logic to load a feature extractor that is deprecated, which you should notice by seeing the warning: "
|
166 |
-
"\n\n ```\ntransformers/models/clip/feature_extraction_clip.py:28: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. "
|
167 |
-
f"Please use CLIPImageProcessor instead. warnings.warn(\n``` \n\n when running `pipe = DiffusionPipeline.from_pretrained({model_id})`."
|
168 |
-
"This PR makes sure that the warning does not show anymore by replacing `CLIPFeatureExtractor` with `CLIPImageProcessor`. This will certainly not change or break your checkpoint, but only"
|
169 |
-
"make sure that everything is up to date. \n\n Best, the 🧨 Diffusers team."
|
170 |
-
)
|
171 |
-
new_pr = api.create_commit(
|
172 |
-
repo_id=model_id,
|
173 |
-
operations=operations,
|
174 |
-
commit_message=pr_title,
|
175 |
-
commit_description=pr_description,
|
176 |
-
create_pr=True,
|
177 |
-
)
|
178 |
-
print(f"Pr created at {new_pr.pr_url}")
|
179 |
-
else:
|
180 |
-
print(f"No files to convert for {model_id}")
|
181 |
-
finally:
|
182 |
-
shutil.rmtree(folder)
|
183 |
-
return new_pr
|
184 |
-
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
DESCRIPTION = """
|
@@ -196,12 +58,7 @@ if __name__ == "__main__":
|
|
196 |
type=str,
|
197 |
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
|
198 |
)
|
199 |
-
parser.add_argument(
|
200 |
-
"--force",
|
201 |
-
action="store_true",
|
202 |
-
help="Create the PR even if it already exists of if the model was already converted.",
|
203 |
-
)
|
204 |
args = parser.parse_args()
|
205 |
model_id = args.model_id
|
206 |
api = HfApi()
|
207 |
-
convert(api, model_id
|
|
|
2 |
import json
|
3 |
import os
|
4 |
import shutil
|
5 |
+
import torch
|
6 |
from tempfile import TemporaryDirectory
|
7 |
from typing import List, Optional
|
8 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel
|
9 |
|
10 |
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
|
11 |
from huggingface_hub.file_download import repo_folder_name
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]:
|
|
|
|
|
15 |
info = api.model_info(model_id)
|
16 |
filenames = set(s.rfilename for s in info.siblings)
|
17 |
|
|
|
41 |
folder_path=folder,
|
42 |
repo_id=model_id,
|
43 |
repo_type="model",
|
44 |
+
create_pr=True,
|
45 |
)
|
46 |
+
print(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
DESCRIPTION = """
|
|
|
58 |
type=str,
|
59 |
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
|
60 |
)
|
|
|
|
|
|
|
|
|
|
|
61 |
args = parser.parse_args()
|
62 |
model_id = args.model_id
|
63 |
api = HfApi()
|
64 |
+
convert(api, model_id)
|
parti_prompts.py
CHANGED
@@ -28,8 +28,8 @@ def get_karlo_eval(ckpt):
|
|
28 |
pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
|
29 |
pipe.to("cuda")
|
30 |
|
31 |
-
def karlo_eval(prompt):
|
32 |
-
images = pipe(prompt, prior_num_inference_steps=50, decoder_num_inference_steps=NUM_INFERENCE_STEPS).images
|
33 |
return images
|
34 |
|
35 |
return karlo_eval
|
|
|
28 |
pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
|
29 |
pipe.to("cuda")
|
30 |
|
31 |
+
def karlo_eval(prompt, generator=None):
|
32 |
+
images = pipe(prompt, prior_num_inference_steps=50, generator=generator, decoder_num_inference_steps=NUM_INFERENCE_STEPS).images
|
33 |
return images
|
34 |
|
35 |
return karlo_eval
|