patrickvonplaten commited on
Commit
a38f44b
·
1 Parent(s): a9639c8

[LCM] Better error message

Browse files
Files changed (9) hide show
  1. + +21 -0
  2. bug_5776.py +7 -0
  3. clean.py +2 -0
  4. delete_function.py +38 -0
  5. os +0 -0
  6. run_lcm.py +21 -0
  7. run_randn.py +13 -0
  8. run_whisper.py +20 -0
  9. snow_mountain.png +0 -0
+ ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
3
+ import torch
4
+
5
+ pipe = AutoPipelineForText2Image.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", dtype=torch.float16)
6
+
7
+ prompt = "A beautiful landscape of a snowy mountain"
8
+
9
+ num_inference_steps = 1
10
+
11
+ image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, output_type="pil").images[0]
12
+ image.save("snow_mountain.png")
13
+
14
+ pipe = AutoPipelineForImage2Image.from_pipe(pipe)
15
+
16
+ prompt = "A beautiful landscape of a very red mountain"
17
+
18
+ image = pipe(prompt=prompt, image=image, num_inference_steps=10, strength=0.05, output_type="pil").images[0]
19
+ image.show()
20
+
21
+
bug_5776.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from diffusers import AutoPipelineForText2Image
3
+ import torch
4
+
5
+ pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16).to("cuda")
6
+ pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora", weight_name="cereal_box_sdxl_v1.safetensors")
7
+ print(pipeline.unet.attn_processor)
clean.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ #!/usr/bin/env python3
2
+ from diffusers import *
delete_function.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import sys
3
+
4
+ filenames = sys.argv[1:]
5
+
6
+ MATCH_PATTERN_1 = "# Copied from transformers.models.bart.modeling_bart._make_causal_mask"
7
+ MATCH_PATTERN_2 = "def _make_causal_mask("
8
+
9
+ MATCH_PATTERN_1 = "# Copied from transformers.models.bart.modeling_bart.prepare_4d_attention_mask"
10
+ MATCH_PATTERN_2 = "def prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):"
11
+
12
+ END_MATCH_PATTERN_2 = ""
13
+
14
+ # MATCH_PATTERN_1 = "def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):"
15
+ #MATCH_PATTERN_2 = "# create causal mask"
16
+
17
+ # END_MATCH_PATTERN_2 = "def forward("
18
+
19
+
20
+ for filename in filenames:
21
+ with open(filename, "r") as f:
22
+ lines = f.readlines()
23
+
24
+ new_lines = []
25
+ is_in_del = False
26
+ for i, line in enumerate(lines):
27
+ if line.strip().lstrip() == MATCH_PATTERN_1 and i < len(lines) - 1 and lines[i + 1].strip().lstrip() == MATCH_PATTERN_2:
28
+ print("suh")
29
+ is_in_del = True
30
+ elif line.strip().lstrip() == "" and i < len(lines) - 1 and lines[i + 1].strip().lstrip() == END_MATCH_PATTERN_2:
31
+ is_in_del = False
32
+
33
+ if not is_in_del:
34
+ new_lines.append(line)
35
+
36
+
37
+ with open(filename, "w") as f:
38
+ f.writelines(new_lines)
os ADDED
File without changes
run_lcm.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image
3
+ import torch
4
+
5
+ pipe = AutoPipelineForText2Image.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", dtype=torch.float16)
6
+
7
+ prompt = "A beautiful landscape of a snowy mountain"
8
+
9
+ num_inference_steps = 1
10
+
11
+ image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, output_type="pil").images[0]
12
+ image.save("snow_mountain.png")
13
+
14
+ pipe = AutoPipelineForImage2Image.from_pipe(pipe)
15
+
16
+ prompt = "A beautiful landscape of a very red mountain"
17
+
18
+ image = pipe(prompt=prompt, image=image, num_inference_steps=10, strength=0.05, output_type="pil").images[0]
19
+ image.show()
20
+
21
+
run_randn.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import torch
3
+
4
+ def get_random():
5
+ return torch.randn((2,2))
6
+
7
+ seeds = []
8
+ for _ in range(5):
9
+ num = get_random()
10
+ seeds.append(torch.initial_seed())
11
+ print(num)
12
+
13
+ print("Seeds should be different, but are not", seeds)
run_whisper.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor
3
+ import torch
4
+ from datasets import load_dataset
5
+
6
+ processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2")
7
+ model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large-v2")
8
+
9
+ assistant_model = WhisperForCausalLM.from_pretrained("patrickvonplaten/whisper-large-v2-32-2")
10
+
11
+ ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
12
+ sample = ds[0]["audio"]
13
+ input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
14
+
15
+ predicted_ids = model.generate(input_features, assistant_model=assistant_model)
16
+
17
+ # decode token ids to text
18
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
19
+
20
+ print(transcription)
snow_mountain.png ADDED