patrickvonplaten
commited on
Merge branch 'main' of https://huggingface.co./diffusers/tools into main
Browse files- README.md +98 -0
- aa_orig_comp (6).png +0 -0
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Diffusers Tools
|
2 |
+
|
3 |
+
This is a collection of scripts that can be useful for various tasks related to the [diffusers library](https://github.com/huggingface/diffusers)
|
4 |
+
|
5 |
+
## 1. Test against original checkpoints
|
6 |
+
|
7 |
+
**It's very important to have visually the exact same results as the original code bases.!**
|
8 |
+
|
9 |
+
E.g. to make use `diffusers` is identical to the original [CompVis codebase](https://github.com/CompVis/stable-diffusion), you can run the following script in the original CompVis codebase:
|
10 |
+
|
11 |
+
1. Download the original [SD-1-4 checkpoint](https://huggingface.co/CompVis/stable-diffusion-v1-4) and put it in the correct folder following the instructions on: https://github.com/CompVis/stable-diffusion
|
12 |
+
|
13 |
+
2. Run the following command
|
14 |
+
```
|
15 |
+
python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1
|
16 |
+
```
|
17 |
+
|
18 |
+
and compare this to the same command in diffusers:
|
19 |
+
|
20 |
+
```python
|
21 |
+
from diffusers import DiffusionPipeline, StableDiffusionPipeline, DDIMScheduler
|
22 |
+
import torch
|
23 |
+
|
24 |
+
# python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1
|
25 |
+
seed = 0
|
26 |
+
|
27 |
+
prompt = "a photograph of an astronaut riding a horse"
|
28 |
+
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16)
|
29 |
+
|
30 |
+
pipe = pipe.to("cuda")
|
31 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
32 |
+
torch.manual_seed(0)
|
33 |
+
image = pipe(prompt, num_inference_steps=50).images[0]
|
34 |
+
|
35 |
+
image.save("/home/patrick_huggingface_co/images/aa_comp.png")
|
36 |
+
```
|
37 |
+
|
38 |
+
Both commands should give the following image on a V100:
|
39 |
+
|
40 |
+
|
41 |
+
## 2. Test against [k-diffusion](https://github.com/crowsonkb/k-diffusion):
|
42 |
+
|
43 |
+
You can run the following script to compare against k-diffusion.
|
44 |
+
|
45 |
+
See results [here](https://huggingface.co/datasets/patrickvonplaten/images)
|
46 |
+
|
47 |
+
```python
|
48 |
+
from diffusers import StableDiffusionKDiffusionPipeline, HeunDiscreteScheduler, StableDiffusionPipeline, DPMSolverMultistepScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler
|
49 |
+
import torch
|
50 |
+
import os
|
51 |
+
|
52 |
+
seed = 13
|
53 |
+
inference_steps = 25
|
54 |
+
#checkpoint = "CompVis/stable-diffusion-v1-4"
|
55 |
+
checkpoint = "stabilityai/stable-diffusion-2-1"
|
56 |
+
prompts = ["astronaut riding horse", "whale falling from sky", "magical forest", "highly photorealistic picture of johnny depp"]
|
57 |
+
prompts = 8 * ["highly photorealistic picture of johnny depp"]
|
58 |
+
#prompts = prompts[:1]
|
59 |
+
samplers = ["sample_dpmpp_2m", "sample_euler", "sample_heun", "sample_dpm_2", "sample_lms"]
|
60 |
+
#samplers = samplers[:1]
|
61 |
+
|
62 |
+
pipe = StableDiffusionKDiffusionPipeline.from_pretrained(checkpoint, torch_dtype=torch.float16, safety_checker=None)
|
63 |
+
pipe = pipe.to("cuda")
|
64 |
+
|
65 |
+
for i, prompt in enumerate(prompts):
|
66 |
+
prompt_f = f"{'_'.join(prompt.split())}_{i}"
|
67 |
+
for sampler in samplers:
|
68 |
+
pipe.set_scheduler(sampler)
|
69 |
+
torch.manual_seed(seed + i)
|
70 |
+
image = pipe(prompt, num_inference_steps=inference_steps).images[0]
|
71 |
+
checkpoint_f = f"{'--'.join(checkpoint.split('/'))}"
|
72 |
+
os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True)
|
73 |
+
os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True)
|
74 |
+
image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}.png")
|
75 |
+
|
76 |
+
|
77 |
+
pipe = StableDiffusionPipeline(**pipe.components)
|
78 |
+
pipe = pipe.to("cuda")
|
79 |
+
|
80 |
+
for i, prompt in enumerate(prompts):
|
81 |
+
prompt_f = f"{'_'.join(prompt.split())}_{i}"
|
82 |
+
for sampler in samplers:
|
83 |
+
if sampler == "sample_euler":
|
84 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
85 |
+
elif sampler == "sample_heun":
|
86 |
+
pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config)
|
87 |
+
elif sampler == "sample_dpmpp_2m":
|
88 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
89 |
+
elif sampler == "sample_lms":
|
90 |
+
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
91 |
+
|
92 |
+
torch.manual_seed(seed + i)
|
93 |
+
image = pipe(prompt, num_inference_steps=inference_steps).images[0]
|
94 |
+
checkpoint_f = f"{'--'.join(checkpoint.split('/'))}"
|
95 |
+
os.makedirs("/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True)
|
96 |
+
os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True)
|
97 |
+
image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}_hf.png")
|
98 |
+
```
|
aa_orig_comp (6).png
ADDED