|
|
|
|
|
import os |
|
import PIL |
|
from pathlib import Path |
|
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler, StableDiffusionInpaintPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionControlNetImg2ImgPipeline |
|
from diffusers.utils import load_image |
|
import numpy as np |
|
from huggingface_hub import HfApi |
|
import torch |
|
|
|
api = HfApi() |
|
init_image = load_image( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png" |
|
) |
|
init_image = init_image.resize((512, 512)) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(33) |
|
|
|
mask_image = load_image( |
|
"https://huggingface.co./datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png" |
|
) |
|
mask_image = mask_image.resize((512, 512)) |
|
|
|
|
|
def make_inpaint_condition(image, image_mask): |
|
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 |
|
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 |
|
|
|
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" |
|
image[image_mask > 0.5] = -1.0 |
|
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
return image |
|
|
|
|
|
control_image = make_inpaint_condition(init_image, mask_image) |
|
|
|
mask_image = PIL.Image.open("/home/patrick/images/mask.png").convert('RGB') |
|
init_image = PIL.Image.open("/home/patrick/images/init.png").convert('RGB') |
|
control_image = PIL.Image.open("/home/patrick/images/seg.png").convert('RGB') |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"mfidabel/controlnet-segment-anything", torch_dtype=torch.float16 |
|
) |
|
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
for t in [2]: |
|
image = pipe( |
|
"a bench in front of a beautiful lake and white mountain", |
|
num_inference_steps=t, |
|
generator=generator, |
|
eta=1.0, |
|
image=init_image, |
|
mask_image=mask_image, |
|
control_image=control_image, |
|
).images[0] |
|
|
|
file_name = f"aa_{t}" |
|
path = os.path.join(Path.home(), "images", f"{file_name}.png") |
|
image.save(path) |
|
|
|
api.upload_file( |
|
path_or_fileobj=path, |
|
path_in_repo=path.split("/")[-1], |
|
repo_id="patrickvonplaten/images", |
|
repo_type="dataset", |
|
) |
|
print(f"https://huggingface.co./datasets/patrickvonplaten/images/blob/main/{file_name}.png") |
|
|