|
#!/usr/bin/env python3 |
|
import torch |
|
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler |
|
import numpy as np |
|
import gc |
|
from diffusers.utils import export_to_video |
|
from PIL import Image |
|
|
|
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16) |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe.enable_vae_slicing() |
|
|
|
prompt = "spiderman running in the desert" |
|
video_frames = pipe(prompt, num_inference_steps=2, height=320, width=576, num_frames=24, output_type="latent".frames |
|
# video_path = export_to_video(video_frames, output_video_path="/home/patrick/videos/video_576_spiderman_24.mp4") |
|
|
|
pipe.to("cpu") |
|
del pipe |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
import ipdb; ipdb.set_trace() |
|
|
|
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16) |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_model_cpu_offload() |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe.enable_vae_slicing() |
|
|
|
video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames] |
|
|
|
video_frames = pipe(prompt, video=video, num_inference_steps=2, strength=0.6).frames |
|
video_path = export_to_video(video_frames, output_video_path="/home/patrick/videos/video_1024_spiderman_24.mp4") |
|
|