File size: 8,984 Bytes
699a234 62fc896 699a234 62fc896 699a234 62fc896 699a234 62fc896 699a234 62fc896 699a234 62fc896 699a234 62fc896 699a234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import argparse
import json
import os
import shutil
from tempfile import TemporaryDirectory
from typing import List, Optional
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download
from huggingface_hub.file_download import repo_folder_name
class AlreadyExists(Exception):
pass
def is_index_stable_diffusion_like(config_dict):
if "_class_name" not in config_dict:
return False
compatible_classes = [
"AltDiffusionImg2ImgPipeline",
"AltDiffusionPipeline",
"CycleDiffusionPipeline",
"StableDiffusionImageVariationPipeline",
"StableDiffusionImg2ImgPipeline",
"StableDiffusionInpaintPipeline",
"StableDiffusionInpaintPipelineLegacy",
"StableDiffusionPipeline",
"StableDiffusionPipelineSafe",
"StableDiffusionUpscalePipeline",
"VersatileDiffusionDualGuidedPipeline",
"VersatileDiffusionImageVariationPipeline",
"VersatileDiffusionPipeline",
"VersatileDiffusionTextToImagePipeline",
"OnnxStableDiffusionImg2ImgPipeline",
"OnnxStableDiffusionInpaintPipeline",
"OnnxStableDiffusionInpaintPipelineLegacy",
"OnnxStableDiffusionPipeline",
"StableDiffusionOnnxPipeline",
"FlaxStableDiffusionPipeline",
]
return config_dict["_class_name"] in compatible_classes
def convert_single(model_id: str, folder: str) -> List["CommitOperationAdd"]:
config_file = "scheduler/scheduler_config.json"
os.makedirs(os.path.join(folder, "scheduler"), exist_ok=True)
model_index_file = hf_hub_download(repo_id=model_id, filename="model_index.json")
with open(model_index_file, "r") as f:
index_dict = json.load(f)
if not is_index_stable_diffusion_like(index_dict):
print(f"{model_id} is not of type stable diffusion.")
return False, False
old_config_file = hf_hub_download(repo_id=model_id, filename=config_file)
new_config_file = os.path.join(folder, config_file)
success = convert_file(old_config_file, new_config_file)
if success:
operations = [CommitOperationAdd(path_in_repo=config_file, path_or_fileobj=new_config_file)]
model_type = success
return operations, model_type
else:
return False, False
def convert_file(
old_config: str,
new_config: str,
):
with open(old_config, "r") as f:
old_dict = json.load(f)
if "clip_sample" not in old_dict:
print("Make scheduler DDIM compatible")
old_dict["clip_sample"] = False
else:
print("No matching config")
return False
# is_stable_diffusion = "down_block_types" in old_dict and list(old_dict["down_block_types"]) == ["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]
#
# is_stable_diffusion_1 = is_stable_diffusion and ("use_linear_projection" not in old_dict or old_dict["use_linear_projection"] is False)
# is_stable_diffusion_2 = is_stable_diffusion and ("use_linear_projection" in old_dict and old_dict["use_linear_projection"] is True)
#
# if not is_stable_diffusion_1 and not is_stable_diffusion_2:
# print("No matching config")
# return False
#
# if is_stable_diffusion_1:
# if old_dict["sample_size"] == 64:
# print("Dict correct")
# return False
#
# print("Correct stable diffusion 1")
# old_dict["sample_size"] = 64
#
# if is_stable_diffusion_2:
# if old_dict["sample_size"] == 96:
# print("Dict correct")
# return False
#
# print("Correct stable diffusion 2")
# old_dict["sample_size"] = 96
#
with open(new_config, 'w') as f:
json_str = json.dumps(old_dict, indent=2, sort_keys=True) + "\n"
f.write(json_str)
#
# return "Stable Diffusion 1" if is_stable_diffusion_1 else "Stable Diffusion 2"
return "Stable Diffusion"
def previous_pr(api: "HfApi", model_id: str, pr_title: str) -> Optional["Discussion"]:
try:
discussions = api.get_repo_discussions(repo_id=model_id)
except Exception:
return None
for discussion in discussions:
if discussion.status == "open" and discussion.is_pull_request and discussion.title == pr_title:
return discussion
def convert(api: "HfApi", model_id: str, force: bool = False) -> Optional["CommitInfo"]:
# pr_title = "Correct `sample_size` of {}'s unet to have correct width and height default"
pr_title = "Add `clip_sample=False` to scheduler to make model compatible with DDIM."
info = api.model_info(model_id)
filenames = set(s.rfilename for s in info.siblings)
if "unet/config.json" not in filenames:
print(f"Model: {model_id} has no 'unet/config.json' file to change")
return
if "vae/config.json" not in filenames:
print(f"Model: {model_id} has no 'vae/config.json' file to change")
return
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
new_pr = None
try:
operations = None
pr = previous_pr(api, model_id, pr_title)
if pr is not None and not force:
url = f"https://huggingface.co./{model_id}/discussions/{pr.num}"
new_pr = pr
raise AlreadyExists(f"Model {model_id} already has an open PR check out {url}")
else:
operations, model_type = convert_single(model_id, folder)
if operations:
pr_title = pr_title.format(model_type)
# if model_type == "Stable Diffusion 1":
# sample_size = 64
# image_size = 512
# elif model_type == "Stable Diffusion 2":
# sample_size = 96
# image_size = 768
# pr_description = (
# f"Since `diffusers==0.9.0` the width and height is automatically inferred from the `sample_size` attribute of your unet's config. It seems like your diffusion model has the same architecture as {model_type} which means that when using this model, by default an image size of {image_size}x{image_size} should be generated. This in turn means the unet's sample size should be **{sample_size}**. \n\n In order to suppress to update your configuration on the fly and to suppress the deprecation warning added in this PR: https://github.com/huggingface/diffusers/pull/1406/files#r1035703505 it is strongly recommended to merge this PR."
# )
contributor = model_id.split("/")[0]
pr_description = (
f"Hey {contributor} 👋, \n\n Your model repository seems to contain a stable diffusion checkpoint. We have noticed that your scheduler config currently does not correctly work with the [DDIMScheduler](https://huggingface.co./docs/diffusers/main/en/api/schedulers#diffusers.DDIMScheduler) because `clip_sample` is not set to False and will therefore [incorrectly default to True](https://github.com/huggingface/diffusers/blob/3ce6380d3a2ec5c3e3f4f48889d380d657b151bc/src/diffusers/schedulers/scheduling_ddim.py#L127). \n The official stable diffusion checkpoints have `clip_sample=False` so that the scheduler config works will **all** schedulers, see: https://huggingface.co./stabilityai/stable-diffusion-2-1-base/blob/main/scheduler/scheduler_config.json#L7. \n\n We strongly recommend that you merge this PR to make sure your model works correctly with DDIM. \n\n Diffusingly, \n Patrick."
)
new_pr = api.create_commit(
repo_id=model_id,
operations=operations,
commit_message=pr_title,
commit_description=pr_description,
create_pr=True,
)
print(f"Pr created at {new_pr.pr_url}")
else:
print(f"No files to convert for {model_id}")
finally:
shutil.rmtree(folder)
return new_pr
if __name__ == "__main__":
DESCRIPTION = """
Simple utility tool to convert automatically some weights on the hub to `safetensors` format.
It is PyTorch exclusive for now.
It works by downloading the weights (PT), converting them locally, and uploading them back
as a PR on the hub.
"""
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument(
"model_id",
type=str,
help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`",
)
parser.add_argument(
"--force",
action="store_true",
help="Create the PR even if it already exists of if the model was already converted.",
)
args = parser.parse_args()
model_id = args.model_id
api = HfApi()
convert(api, model_id, force=args.force)
|