Text Generation
Transformers
Safetensors
lola_v1
custom_code
neo-nlp-dev commited on
Commit
5b878c2
1 Parent(s): e1de83f

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/nikit_ws/lola_converted_model/lola_hf_model",
3
+ "activation_function": "gelu_fast",
4
+ "architectures": [
5
+ "LOLALMHeadModel"
6
+ ],
7
+ "attn_pdrop": 0.1,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_lola_gpt2.LOLAConfig",
10
+ "AutoModelForCausalLM": "modeling_lola_gpt2.LOLALMHeadModel"
11
+ },
12
+ "bos_token_id": 100095,
13
+ "embd_pdrop": 0.1,
14
+ "eos_token_id": 100095,
15
+ "initializer_range": 0.02,
16
+ "layer_norm_epsilon": 1e-05,
17
+ "model_type": "lola_v1",
18
+ "n_embd": 2048,
19
+ "n_head": 16,
20
+ "n_inner": 8192,
21
+ "n_layer": 24,
22
+ "n_positions": 2048,
23
+ "num_experts": 16,
24
+ "reorder_and_upcast_attn": false,
25
+ "resid_pdrop": 0.1,
26
+ "scale_attn_by_inverse_layer_idx": false,
27
+ "scale_attn_weights": true,
28
+ "summary_activation": null,
29
+ "summary_first_dropout": 0.1,
30
+ "summary_proj_to_labels": true,
31
+ "summary_type": "cls_index",
32
+ "summary_use_proj": true,
33
+ "tokenizer_class": "GPT2TokenizerFast",
34
+ "topk": 1,
35
+ "torch_dtype": "float32",
36
+ "transformers_version": "4.39.1",
37
+ "use_cache": true,
38
+ "vocab_size": 100096
39
+ }
configuration_lola_gpt2.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+ from transformers import GPT2Config
4
+
5
+
6
+ logger = logging.get_logger(__name__)
7
+
8
+
9
+ class LOLAConfig(PretrainedConfig):
10
+ """
11
+ This is the configuration class is a modified copy of https://huggingface.co/openai-community/gpt2 with MoE support.
12
+ """
13
+
14
+ model_type = "lola_v1"
15
+ keys_to_ignore_at_inference = ["past_key_values"]
16
+ attribute_map = {
17
+ "hidden_size": "n_embd",
18
+ "max_position_embeddings": "n_positions",
19
+ "num_attention_heads": "n_head",
20
+ "num_hidden_layers": "n_layer",
21
+ }
22
+
23
+ def __init__(
24
+ self,
25
+ vocab_size=100096,
26
+ n_positions=2048,
27
+ n_embd=2048,
28
+ n_layer=24,
29
+ n_head=16,
30
+ n_inner=8192,
31
+ activation_function="gelu_new",
32
+ resid_pdrop=0.1,
33
+ embd_pdrop=0.1,
34
+ attn_pdrop=0.1,
35
+ layer_norm_epsilon=1e-5,
36
+ initializer_range=0.02,
37
+ summary_type="cls_index",
38
+ summary_use_proj=True,
39
+ summary_activation=None,
40
+ summary_proj_to_labels=True,
41
+ summary_first_dropout=0.1,
42
+ scale_attn_weights=True,
43
+ use_cache=True,
44
+ bos_token_id=100095,
45
+ eos_token_id=100095,
46
+ scale_attn_by_inverse_layer_idx=False,
47
+ reorder_and_upcast_attn=False,
48
+ num_experts=16,
49
+ topk=1,
50
+ **kwargs,
51
+ ):
52
+ self.vocab_size = vocab_size
53
+ self.n_positions = n_positions
54
+ self.n_embd = n_embd
55
+ self.n_layer = n_layer
56
+ self.n_head = n_head
57
+ self.n_inner = n_inner
58
+ self.activation_function = activation_function
59
+ self.resid_pdrop = resid_pdrop
60
+ self.embd_pdrop = embd_pdrop
61
+ self.attn_pdrop = attn_pdrop
62
+ self.layer_norm_epsilon = layer_norm_epsilon
63
+ self.initializer_range = initializer_range
64
+ self.summary_type = summary_type
65
+ self.summary_use_proj = summary_use_proj
66
+ self.summary_activation = summary_activation
67
+ self.summary_first_dropout = summary_first_dropout
68
+ self.summary_proj_to_labels = summary_proj_to_labels
69
+ self.scale_attn_weights = scale_attn_weights
70
+ self.use_cache = use_cache
71
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
72
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
73
+ self.num_experts = num_experts
74
+ self.topk = topk
75
+
76
+ self.bos_token_id = bos_token_id
77
+ self.eos_token_id = eos_token_id
78
+
79
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
80
+
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100095,
4
+ "eos_token_id": 100095,
5
+ "transformers_version": "4.39.1"
6
+ }
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:396b834a5b19a844be1aa0c0ba55cf4169ceac1a0c74d4d7847c7ec3b9c1ad2e
3
+ size 4999242472
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5875426198d3f0b0bbc768cde963d93031cb39105430b71975b2d6a2d51ba8f4
3
+ size 4968033584
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:265701af5866bb964e4ec383993f5d9e66d1abbd11e75f6fb17f945008b2589b
3
+ size 4968033640
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:870633904f6cea8b7682632da19b0de7b7a3d8245fa7173a722b66811512a042
3
+ size 4968033752
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc5c4ecb98101123d54fbcf2d49b82d66fac5ede25f75531e45cbc6e1c6555c7
3
+ size 4968033752
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:029df2bae1a565cbaba799fd22f551ef68f18638f7c4c66adb9938a28406dfe3
3
+ size 4968050328
model.safetensors.index.json ADDED
@@ -0,0 +1,1031 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29839310848
4
+ },
5
+ "weight_map": {
6
+ "transformer.h.0.attn.c_attn.bias": "model-00001-of-00006.safetensors",
7
+ "transformer.h.0.attn.c_attn.weight": "model-00001-of-00006.safetensors",
8
+ "transformer.h.0.attn.c_proj.bias": "model-00001-of-00006.safetensors",
9
+ "transformer.h.0.attn.c_proj.weight": "model-00001-of-00006.safetensors",
10
+ "transformer.h.0.ln_1.bias": "model-00001-of-00006.safetensors",
11
+ "transformer.h.0.ln_1.weight": "model-00001-of-00006.safetensors",
12
+ "transformer.h.0.ln_2.bias": "model-00001-of-00006.safetensors",
13
+ "transformer.h.0.ln_2.weight": "model-00001-of-00006.safetensors",
14
+ "transformer.h.0.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
15
+ "transformer.h.0.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
16
+ "transformer.h.0.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
17
+ "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
18
+ "transformer.h.1.attn.c_attn.bias": "model-00001-of-00006.safetensors",
19
+ "transformer.h.1.attn.c_attn.weight": "model-00001-of-00006.safetensors",
20
+ "transformer.h.1.attn.c_proj.bias": "model-00001-of-00006.safetensors",
21
+ "transformer.h.1.attn.c_proj.weight": "model-00001-of-00006.safetensors",
22
+ "transformer.h.1.ln_1.bias": "model-00001-of-00006.safetensors",
23
+ "transformer.h.1.ln_1.weight": "model-00001-of-00006.safetensors",
24
+ "transformer.h.1.ln_2.bias": "model-00001-of-00006.safetensors",
25
+ "transformer.h.1.ln_2.weight": "model-00001-of-00006.safetensors",
26
+ "transformer.h.1.moe.experts.0.c_fc.bias": "model-00001-of-00006.safetensors",
27
+ "transformer.h.1.moe.experts.0.c_fc.weight": "model-00001-of-00006.safetensors",
28
+ "transformer.h.1.moe.experts.0.c_proj.bias": "model-00001-of-00006.safetensors",
29
+ "transformer.h.1.moe.experts.0.c_proj.weight": "model-00001-of-00006.safetensors",
30
+ "transformer.h.1.moe.experts.1.c_fc.bias": "model-00001-of-00006.safetensors",
31
+ "transformer.h.1.moe.experts.1.c_fc.weight": "model-00001-of-00006.safetensors",
32
+ "transformer.h.1.moe.experts.1.c_proj.bias": "model-00001-of-00006.safetensors",
33
+ "transformer.h.1.moe.experts.1.c_proj.weight": "model-00001-of-00006.safetensors",
34
+ "transformer.h.1.moe.experts.10.c_fc.bias": "model-00001-of-00006.safetensors",
35
+ "transformer.h.1.moe.experts.10.c_fc.weight": "model-00001-of-00006.safetensors",
36
+ "transformer.h.1.moe.experts.10.c_proj.bias": "model-00001-of-00006.safetensors",
37
+ "transformer.h.1.moe.experts.10.c_proj.weight": "model-00001-of-00006.safetensors",
38
+ "transformer.h.1.moe.experts.11.c_fc.bias": "model-00001-of-00006.safetensors",
39
+ "transformer.h.1.moe.experts.11.c_fc.weight": "model-00001-of-00006.safetensors",
40
+ "transformer.h.1.moe.experts.11.c_proj.bias": "model-00001-of-00006.safetensors",
41
+ "transformer.h.1.moe.experts.11.c_proj.weight": "model-00001-of-00006.safetensors",
42
+ "transformer.h.1.moe.experts.12.c_fc.bias": "model-00001-of-00006.safetensors",
43
+ "transformer.h.1.moe.experts.12.c_fc.weight": "model-00001-of-00006.safetensors",
44
+ "transformer.h.1.moe.experts.12.c_proj.bias": "model-00001-of-00006.safetensors",
45
+ "transformer.h.1.moe.experts.12.c_proj.weight": "model-00001-of-00006.safetensors",
46
+ "transformer.h.1.moe.experts.13.c_fc.bias": "model-00001-of-00006.safetensors",
47
+ "transformer.h.1.moe.experts.13.c_fc.weight": "model-00001-of-00006.safetensors",
48
+ "transformer.h.1.moe.experts.13.c_proj.bias": "model-00001-of-00006.safetensors",
49
+ "transformer.h.1.moe.experts.13.c_proj.weight": "model-00001-of-00006.safetensors",
50
+ "transformer.h.1.moe.experts.14.c_fc.bias": "model-00001-of-00006.safetensors",
51
+ "transformer.h.1.moe.experts.14.c_fc.weight": "model-00001-of-00006.safetensors",
52
+ "transformer.h.1.moe.experts.14.c_proj.bias": "model-00001-of-00006.safetensors",
53
+ "transformer.h.1.moe.experts.14.c_proj.weight": "model-00001-of-00006.safetensors",
54
+ "transformer.h.1.moe.experts.15.c_fc.bias": "model-00001-of-00006.safetensors",
55
+ "transformer.h.1.moe.experts.15.c_fc.weight": "model-00001-of-00006.safetensors",
56
+ "transformer.h.1.moe.experts.15.c_proj.bias": "model-00001-of-00006.safetensors",
57
+ "transformer.h.1.moe.experts.15.c_proj.weight": "model-00001-of-00006.safetensors",
58
+ "transformer.h.1.moe.experts.2.c_fc.bias": "model-00001-of-00006.safetensors",
59
+ "transformer.h.1.moe.experts.2.c_fc.weight": "model-00001-of-00006.safetensors",
60
+ "transformer.h.1.moe.experts.2.c_proj.bias": "model-00001-of-00006.safetensors",
61
+ "transformer.h.1.moe.experts.2.c_proj.weight": "model-00001-of-00006.safetensors",
62
+ "transformer.h.1.moe.experts.3.c_fc.bias": "model-00001-of-00006.safetensors",
63
+ "transformer.h.1.moe.experts.3.c_fc.weight": "model-00001-of-00006.safetensors",
64
+ "transformer.h.1.moe.experts.3.c_proj.bias": "model-00001-of-00006.safetensors",
65
+ "transformer.h.1.moe.experts.3.c_proj.weight": "model-00001-of-00006.safetensors",
66
+ "transformer.h.1.moe.experts.4.c_fc.bias": "model-00001-of-00006.safetensors",
67
+ "transformer.h.1.moe.experts.4.c_fc.weight": "model-00001-of-00006.safetensors",
68
+ "transformer.h.1.moe.experts.4.c_proj.bias": "model-00001-of-00006.safetensors",
69
+ "transformer.h.1.moe.experts.4.c_proj.weight": "model-00001-of-00006.safetensors",
70
+ "transformer.h.1.moe.experts.5.c_fc.bias": "model-00001-of-00006.safetensors",
71
+ "transformer.h.1.moe.experts.5.c_fc.weight": "model-00001-of-00006.safetensors",
72
+ "transformer.h.1.moe.experts.5.c_proj.bias": "model-00001-of-00006.safetensors",
73
+ "transformer.h.1.moe.experts.5.c_proj.weight": "model-00001-of-00006.safetensors",
74
+ "transformer.h.1.moe.experts.6.c_fc.bias": "model-00001-of-00006.safetensors",
75
+ "transformer.h.1.moe.experts.6.c_fc.weight": "model-00001-of-00006.safetensors",
76
+ "transformer.h.1.moe.experts.6.c_proj.bias": "model-00001-of-00006.safetensors",
77
+ "transformer.h.1.moe.experts.6.c_proj.weight": "model-00001-of-00006.safetensors",
78
+ "transformer.h.1.moe.experts.7.c_fc.bias": "model-00001-of-00006.safetensors",
79
+ "transformer.h.1.moe.experts.7.c_fc.weight": "model-00001-of-00006.safetensors",
80
+ "transformer.h.1.moe.experts.7.c_proj.bias": "model-00001-of-00006.safetensors",
81
+ "transformer.h.1.moe.experts.7.c_proj.weight": "model-00001-of-00006.safetensors",
82
+ "transformer.h.1.moe.experts.8.c_fc.bias": "model-00001-of-00006.safetensors",
83
+ "transformer.h.1.moe.experts.8.c_fc.weight": "model-00001-of-00006.safetensors",
84
+ "transformer.h.1.moe.experts.8.c_proj.bias": "model-00001-of-00006.safetensors",
85
+ "transformer.h.1.moe.experts.8.c_proj.weight": "model-00001-of-00006.safetensors",
86
+ "transformer.h.1.moe.experts.9.c_fc.bias": "model-00001-of-00006.safetensors",
87
+ "transformer.h.1.moe.experts.9.c_fc.weight": "model-00001-of-00006.safetensors",
88
+ "transformer.h.1.moe.experts.9.c_proj.bias": "model-00001-of-00006.safetensors",
89
+ "transformer.h.1.moe.experts.9.c_proj.weight": "model-00001-of-00006.safetensors",
90
+ "transformer.h.1.moe.gate.weight": "model-00001-of-00006.safetensors",
91
+ "transformer.h.10.attn.c_attn.bias": "model-00003-of-00006.safetensors",
92
+ "transformer.h.10.attn.c_attn.weight": "model-00003-of-00006.safetensors",
93
+ "transformer.h.10.attn.c_proj.bias": "model-00003-of-00006.safetensors",
94
+ "transformer.h.10.attn.c_proj.weight": "model-00003-of-00006.safetensors",
95
+ "transformer.h.10.ln_1.bias": "model-00003-of-00006.safetensors",
96
+ "transformer.h.10.ln_1.weight": "model-00003-of-00006.safetensors",
97
+ "transformer.h.10.ln_2.bias": "model-00003-of-00006.safetensors",
98
+ "transformer.h.10.ln_2.weight": "model-00003-of-00006.safetensors",
99
+ "transformer.h.10.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
100
+ "transformer.h.10.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
101
+ "transformer.h.10.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
102
+ "transformer.h.10.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
103
+ "transformer.h.11.attn.c_attn.bias": "model-00003-of-00006.safetensors",
104
+ "transformer.h.11.attn.c_attn.weight": "model-00003-of-00006.safetensors",
105
+ "transformer.h.11.attn.c_proj.bias": "model-00003-of-00006.safetensors",
106
+ "transformer.h.11.attn.c_proj.weight": "model-00003-of-00006.safetensors",
107
+ "transformer.h.11.ln_1.bias": "model-00003-of-00006.safetensors",
108
+ "transformer.h.11.ln_1.weight": "model-00003-of-00006.safetensors",
109
+ "transformer.h.11.ln_2.bias": "model-00003-of-00006.safetensors",
110
+ "transformer.h.11.ln_2.weight": "model-00003-of-00006.safetensors",
111
+ "transformer.h.11.moe.experts.0.c_fc.bias": "model-00003-of-00006.safetensors",
112
+ "transformer.h.11.moe.experts.0.c_fc.weight": "model-00003-of-00006.safetensors",
113
+ "transformer.h.11.moe.experts.0.c_proj.bias": "model-00003-of-00006.safetensors",
114
+ "transformer.h.11.moe.experts.0.c_proj.weight": "model-00003-of-00006.safetensors",
115
+ "transformer.h.11.moe.experts.1.c_fc.bias": "model-00003-of-00006.safetensors",
116
+ "transformer.h.11.moe.experts.1.c_fc.weight": "model-00003-of-00006.safetensors",
117
+ "transformer.h.11.moe.experts.1.c_proj.bias": "model-00003-of-00006.safetensors",
118
+ "transformer.h.11.moe.experts.1.c_proj.weight": "model-00003-of-00006.safetensors",
119
+ "transformer.h.11.moe.experts.10.c_fc.bias": "model-00003-of-00006.safetensors",
120
+ "transformer.h.11.moe.experts.10.c_fc.weight": "model-00003-of-00006.safetensors",
121
+ "transformer.h.11.moe.experts.10.c_proj.bias": "model-00003-of-00006.safetensors",
122
+ "transformer.h.11.moe.experts.10.c_proj.weight": "model-00003-of-00006.safetensors",
123
+ "transformer.h.11.moe.experts.11.c_fc.bias": "model-00003-of-00006.safetensors",
124
+ "transformer.h.11.moe.experts.11.c_fc.weight": "model-00003-of-00006.safetensors",
125
+ "transformer.h.11.moe.experts.11.c_proj.bias": "model-00003-of-00006.safetensors",
126
+ "transformer.h.11.moe.experts.11.c_proj.weight": "model-00003-of-00006.safetensors",
127
+ "transformer.h.11.moe.experts.12.c_fc.bias": "model-00003-of-00006.safetensors",
128
+ "transformer.h.11.moe.experts.12.c_fc.weight": "model-00003-of-00006.safetensors",
129
+ "transformer.h.11.moe.experts.12.c_proj.bias": "model-00003-of-00006.safetensors",
130
+ "transformer.h.11.moe.experts.12.c_proj.weight": "model-00003-of-00006.safetensors",
131
+ "transformer.h.11.moe.experts.13.c_fc.bias": "model-00004-of-00006.safetensors",
132
+ "transformer.h.11.moe.experts.13.c_fc.weight": "model-00004-of-00006.safetensors",
133
+ "transformer.h.11.moe.experts.13.c_proj.bias": "model-00004-of-00006.safetensors",
134
+ "transformer.h.11.moe.experts.13.c_proj.weight": "model-00004-of-00006.safetensors",
135
+ "transformer.h.11.moe.experts.14.c_fc.bias": "model-00004-of-00006.safetensors",
136
+ "transformer.h.11.moe.experts.14.c_fc.weight": "model-00004-of-00006.safetensors",
137
+ "transformer.h.11.moe.experts.14.c_proj.bias": "model-00004-of-00006.safetensors",
138
+ "transformer.h.11.moe.experts.14.c_proj.weight": "model-00004-of-00006.safetensors",
139
+ "transformer.h.11.moe.experts.15.c_fc.bias": "model-00004-of-00006.safetensors",
140
+ "transformer.h.11.moe.experts.15.c_fc.weight": "model-00004-of-00006.safetensors",
141
+ "transformer.h.11.moe.experts.15.c_proj.bias": "model-00004-of-00006.safetensors",
142
+ "transformer.h.11.moe.experts.15.c_proj.weight": "model-00004-of-00006.safetensors",
143
+ "transformer.h.11.moe.experts.2.c_fc.bias": "model-00003-of-00006.safetensors",
144
+ "transformer.h.11.moe.experts.2.c_fc.weight": "model-00003-of-00006.safetensors",
145
+ "transformer.h.11.moe.experts.2.c_proj.bias": "model-00003-of-00006.safetensors",
146
+ "transformer.h.11.moe.experts.2.c_proj.weight": "model-00003-of-00006.safetensors",
147
+ "transformer.h.11.moe.experts.3.c_fc.bias": "model-00003-of-00006.safetensors",
148
+ "transformer.h.11.moe.experts.3.c_fc.weight": "model-00003-of-00006.safetensors",
149
+ "transformer.h.11.moe.experts.3.c_proj.bias": "model-00003-of-00006.safetensors",
150
+ "transformer.h.11.moe.experts.3.c_proj.weight": "model-00003-of-00006.safetensors",
151
+ "transformer.h.11.moe.experts.4.c_fc.bias": "model-00003-of-00006.safetensors",
152
+ "transformer.h.11.moe.experts.4.c_fc.weight": "model-00003-of-00006.safetensors",
153
+ "transformer.h.11.moe.experts.4.c_proj.bias": "model-00003-of-00006.safetensors",
154
+ "transformer.h.11.moe.experts.4.c_proj.weight": "model-00003-of-00006.safetensors",
155
+ "transformer.h.11.moe.experts.5.c_fc.bias": "model-00003-of-00006.safetensors",
156
+ "transformer.h.11.moe.experts.5.c_fc.weight": "model-00003-of-00006.safetensors",
157
+ "transformer.h.11.moe.experts.5.c_proj.bias": "model-00003-of-00006.safetensors",
158
+ "transformer.h.11.moe.experts.5.c_proj.weight": "model-00003-of-00006.safetensors",
159
+ "transformer.h.11.moe.experts.6.c_fc.bias": "model-00003-of-00006.safetensors",
160
+ "transformer.h.11.moe.experts.6.c_fc.weight": "model-00003-of-00006.safetensors",
161
+ "transformer.h.11.moe.experts.6.c_proj.bias": "model-00003-of-00006.safetensors",
162
+ "transformer.h.11.moe.experts.6.c_proj.weight": "model-00003-of-00006.safetensors",
163
+ "transformer.h.11.moe.experts.7.c_fc.bias": "model-00003-of-00006.safetensors",
164
+ "transformer.h.11.moe.experts.7.c_fc.weight": "model-00003-of-00006.safetensors",
165
+ "transformer.h.11.moe.experts.7.c_proj.bias": "model-00003-of-00006.safetensors",
166
+ "transformer.h.11.moe.experts.7.c_proj.weight": "model-00003-of-00006.safetensors",
167
+ "transformer.h.11.moe.experts.8.c_fc.bias": "model-00003-of-00006.safetensors",
168
+ "transformer.h.11.moe.experts.8.c_fc.weight": "model-00003-of-00006.safetensors",
169
+ "transformer.h.11.moe.experts.8.c_proj.bias": "model-00003-of-00006.safetensors",
170
+ "transformer.h.11.moe.experts.8.c_proj.weight": "model-00003-of-00006.safetensors",
171
+ "transformer.h.11.moe.experts.9.c_fc.bias": "model-00003-of-00006.safetensors",
172
+ "transformer.h.11.moe.experts.9.c_fc.weight": "model-00003-of-00006.safetensors",
173
+ "transformer.h.11.moe.experts.9.c_proj.bias": "model-00003-of-00006.safetensors",
174
+ "transformer.h.11.moe.experts.9.c_proj.weight": "model-00003-of-00006.safetensors",
175
+ "transformer.h.11.moe.gate.weight": "model-00003-of-00006.safetensors",
176
+ "transformer.h.12.attn.c_attn.bias": "model-00004-of-00006.safetensors",
177
+ "transformer.h.12.attn.c_attn.weight": "model-00004-of-00006.safetensors",
178
+ "transformer.h.12.attn.c_proj.bias": "model-00004-of-00006.safetensors",
179
+ "transformer.h.12.attn.c_proj.weight": "model-00004-of-00006.safetensors",
180
+ "transformer.h.12.ln_1.bias": "model-00004-of-00006.safetensors",
181
+ "transformer.h.12.ln_1.weight": "model-00004-of-00006.safetensors",
182
+ "transformer.h.12.ln_2.bias": "model-00004-of-00006.safetensors",
183
+ "transformer.h.12.ln_2.weight": "model-00004-of-00006.safetensors",
184
+ "transformer.h.12.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
185
+ "transformer.h.12.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
186
+ "transformer.h.12.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
187
+ "transformer.h.12.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
188
+ "transformer.h.13.attn.c_attn.bias": "model-00004-of-00006.safetensors",
189
+ "transformer.h.13.attn.c_attn.weight": "model-00004-of-00006.safetensors",
190
+ "transformer.h.13.attn.c_proj.bias": "model-00004-of-00006.safetensors",
191
+ "transformer.h.13.attn.c_proj.weight": "model-00004-of-00006.safetensors",
192
+ "transformer.h.13.ln_1.bias": "model-00004-of-00006.safetensors",
193
+ "transformer.h.13.ln_1.weight": "model-00004-of-00006.safetensors",
194
+ "transformer.h.13.ln_2.bias": "model-00004-of-00006.safetensors",
195
+ "transformer.h.13.ln_2.weight": "model-00004-of-00006.safetensors",
196
+ "transformer.h.13.moe.experts.0.c_fc.bias": "model-00004-of-00006.safetensors",
197
+ "transformer.h.13.moe.experts.0.c_fc.weight": "model-00004-of-00006.safetensors",
198
+ "transformer.h.13.moe.experts.0.c_proj.bias": "model-00004-of-00006.safetensors",
199
+ "transformer.h.13.moe.experts.0.c_proj.weight": "model-00004-of-00006.safetensors",
200
+ "transformer.h.13.moe.experts.1.c_fc.bias": "model-00004-of-00006.safetensors",
201
+ "transformer.h.13.moe.experts.1.c_fc.weight": "model-00004-of-00006.safetensors",
202
+ "transformer.h.13.moe.experts.1.c_proj.bias": "model-00004-of-00006.safetensors",
203
+ "transformer.h.13.moe.experts.1.c_proj.weight": "model-00004-of-00006.safetensors",
204
+ "transformer.h.13.moe.experts.10.c_fc.bias": "model-00004-of-00006.safetensors",
205
+ "transformer.h.13.moe.experts.10.c_fc.weight": "model-00004-of-00006.safetensors",
206
+ "transformer.h.13.moe.experts.10.c_proj.bias": "model-00004-of-00006.safetensors",
207
+ "transformer.h.13.moe.experts.10.c_proj.weight": "model-00004-of-00006.safetensors",
208
+ "transformer.h.13.moe.experts.11.c_fc.bias": "model-00004-of-00006.safetensors",
209
+ "transformer.h.13.moe.experts.11.c_fc.weight": "model-00004-of-00006.safetensors",
210
+ "transformer.h.13.moe.experts.11.c_proj.bias": "model-00004-of-00006.safetensors",
211
+ "transformer.h.13.moe.experts.11.c_proj.weight": "model-00004-of-00006.safetensors",
212
+ "transformer.h.13.moe.experts.12.c_fc.bias": "model-00004-of-00006.safetensors",
213
+ "transformer.h.13.moe.experts.12.c_fc.weight": "model-00004-of-00006.safetensors",
214
+ "transformer.h.13.moe.experts.12.c_proj.bias": "model-00004-of-00006.safetensors",
215
+ "transformer.h.13.moe.experts.12.c_proj.weight": "model-00004-of-00006.safetensors",
216
+ "transformer.h.13.moe.experts.13.c_fc.bias": "model-00004-of-00006.safetensors",
217
+ "transformer.h.13.moe.experts.13.c_fc.weight": "model-00004-of-00006.safetensors",
218
+ "transformer.h.13.moe.experts.13.c_proj.bias": "model-00004-of-00006.safetensors",
219
+ "transformer.h.13.moe.experts.13.c_proj.weight": "model-00004-of-00006.safetensors",
220
+ "transformer.h.13.moe.experts.14.c_fc.bias": "model-00004-of-00006.safetensors",
221
+ "transformer.h.13.moe.experts.14.c_fc.weight": "model-00004-of-00006.safetensors",
222
+ "transformer.h.13.moe.experts.14.c_proj.bias": "model-00004-of-00006.safetensors",
223
+ "transformer.h.13.moe.experts.14.c_proj.weight": "model-00004-of-00006.safetensors",
224
+ "transformer.h.13.moe.experts.15.c_fc.bias": "model-00004-of-00006.safetensors",
225
+ "transformer.h.13.moe.experts.15.c_fc.weight": "model-00004-of-00006.safetensors",
226
+ "transformer.h.13.moe.experts.15.c_proj.bias": "model-00004-of-00006.safetensors",
227
+ "transformer.h.13.moe.experts.15.c_proj.weight": "model-00004-of-00006.safetensors",
228
+ "transformer.h.13.moe.experts.2.c_fc.bias": "model-00004-of-00006.safetensors",
229
+ "transformer.h.13.moe.experts.2.c_fc.weight": "model-00004-of-00006.safetensors",
230
+ "transformer.h.13.moe.experts.2.c_proj.bias": "model-00004-of-00006.safetensors",
231
+ "transformer.h.13.moe.experts.2.c_proj.weight": "model-00004-of-00006.safetensors",
232
+ "transformer.h.13.moe.experts.3.c_fc.bias": "model-00004-of-00006.safetensors",
233
+ "transformer.h.13.moe.experts.3.c_fc.weight": "model-00004-of-00006.safetensors",
234
+ "transformer.h.13.moe.experts.3.c_proj.bias": "model-00004-of-00006.safetensors",
235
+ "transformer.h.13.moe.experts.3.c_proj.weight": "model-00004-of-00006.safetensors",
236
+ "transformer.h.13.moe.experts.4.c_fc.bias": "model-00004-of-00006.safetensors",
237
+ "transformer.h.13.moe.experts.4.c_fc.weight": "model-00004-of-00006.safetensors",
238
+ "transformer.h.13.moe.experts.4.c_proj.bias": "model-00004-of-00006.safetensors",
239
+ "transformer.h.13.moe.experts.4.c_proj.weight": "model-00004-of-00006.safetensors",
240
+ "transformer.h.13.moe.experts.5.c_fc.bias": "model-00004-of-00006.safetensors",
241
+ "transformer.h.13.moe.experts.5.c_fc.weight": "model-00004-of-00006.safetensors",
242
+ "transformer.h.13.moe.experts.5.c_proj.bias": "model-00004-of-00006.safetensors",
243
+ "transformer.h.13.moe.experts.5.c_proj.weight": "model-00004-of-00006.safetensors",
244
+ "transformer.h.13.moe.experts.6.c_fc.bias": "model-00004-of-00006.safetensors",
245
+ "transformer.h.13.moe.experts.6.c_fc.weight": "model-00004-of-00006.safetensors",
246
+ "transformer.h.13.moe.experts.6.c_proj.bias": "model-00004-of-00006.safetensors",
247
+ "transformer.h.13.moe.experts.6.c_proj.weight": "model-00004-of-00006.safetensors",
248
+ "transformer.h.13.moe.experts.7.c_fc.bias": "model-00004-of-00006.safetensors",
249
+ "transformer.h.13.moe.experts.7.c_fc.weight": "model-00004-of-00006.safetensors",
250
+ "transformer.h.13.moe.experts.7.c_proj.bias": "model-00004-of-00006.safetensors",
251
+ "transformer.h.13.moe.experts.7.c_proj.weight": "model-00004-of-00006.safetensors",
252
+ "transformer.h.13.moe.experts.8.c_fc.bias": "model-00004-of-00006.safetensors",
253
+ "transformer.h.13.moe.experts.8.c_fc.weight": "model-00004-of-00006.safetensors",
254
+ "transformer.h.13.moe.experts.8.c_proj.bias": "model-00004-of-00006.safetensors",
255
+ "transformer.h.13.moe.experts.8.c_proj.weight": "model-00004-of-00006.safetensors",
256
+ "transformer.h.13.moe.experts.9.c_fc.bias": "model-00004-of-00006.safetensors",
257
+ "transformer.h.13.moe.experts.9.c_fc.weight": "model-00004-of-00006.safetensors",
258
+ "transformer.h.13.moe.experts.9.c_proj.bias": "model-00004-of-00006.safetensors",
259
+ "transformer.h.13.moe.experts.9.c_proj.weight": "model-00004-of-00006.safetensors",
260
+ "transformer.h.13.moe.gate.weight": "model-00004-of-00006.safetensors",
261
+ "transformer.h.14.attn.c_attn.bias": "model-00004-of-00006.safetensors",
262
+ "transformer.h.14.attn.c_attn.weight": "model-00004-of-00006.safetensors",
263
+ "transformer.h.14.attn.c_proj.bias": "model-00004-of-00006.safetensors",
264
+ "transformer.h.14.attn.c_proj.weight": "model-00004-of-00006.safetensors",
265
+ "transformer.h.14.ln_1.bias": "model-00004-of-00006.safetensors",
266
+ "transformer.h.14.ln_1.weight": "model-00004-of-00006.safetensors",
267
+ "transformer.h.14.ln_2.bias": "model-00004-of-00006.safetensors",
268
+ "transformer.h.14.ln_2.weight": "model-00004-of-00006.safetensors",
269
+ "transformer.h.14.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
270
+ "transformer.h.14.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
271
+ "transformer.h.14.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
272
+ "transformer.h.14.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
273
+ "transformer.h.15.attn.c_attn.bias": "model-00004-of-00006.safetensors",
274
+ "transformer.h.15.attn.c_attn.weight": "model-00004-of-00006.safetensors",
275
+ "transformer.h.15.attn.c_proj.bias": "model-00004-of-00006.safetensors",
276
+ "transformer.h.15.attn.c_proj.weight": "model-00004-of-00006.safetensors",
277
+ "transformer.h.15.ln_1.bias": "model-00004-of-00006.safetensors",
278
+ "transformer.h.15.ln_1.weight": "model-00004-of-00006.safetensors",
279
+ "transformer.h.15.ln_2.bias": "model-00004-of-00006.safetensors",
280
+ "transformer.h.15.ln_2.weight": "model-00004-of-00006.safetensors",
281
+ "transformer.h.15.moe.experts.0.c_fc.bias": "model-00004-of-00006.safetensors",
282
+ "transformer.h.15.moe.experts.0.c_fc.weight": "model-00004-of-00006.safetensors",
283
+ "transformer.h.15.moe.experts.0.c_proj.bias": "model-00004-of-00006.safetensors",
284
+ "transformer.h.15.moe.experts.0.c_proj.weight": "model-00004-of-00006.safetensors",
285
+ "transformer.h.15.moe.experts.1.c_fc.bias": "model-00004-of-00006.safetensors",
286
+ "transformer.h.15.moe.experts.1.c_fc.weight": "model-00004-of-00006.safetensors",
287
+ "transformer.h.15.moe.experts.1.c_proj.bias": "model-00004-of-00006.safetensors",
288
+ "transformer.h.15.moe.experts.1.c_proj.weight": "model-00004-of-00006.safetensors",
289
+ "transformer.h.15.moe.experts.10.c_fc.bias": "model-00004-of-00006.safetensors",
290
+ "transformer.h.15.moe.experts.10.c_fc.weight": "model-00004-of-00006.safetensors",
291
+ "transformer.h.15.moe.experts.10.c_proj.bias": "model-00004-of-00006.safetensors",
292
+ "transformer.h.15.moe.experts.10.c_proj.weight": "model-00004-of-00006.safetensors",
293
+ "transformer.h.15.moe.experts.11.c_fc.bias": "model-00004-of-00006.safetensors",
294
+ "transformer.h.15.moe.experts.11.c_fc.weight": "model-00004-of-00006.safetensors",
295
+ "transformer.h.15.moe.experts.11.c_proj.bias": "model-00004-of-00006.safetensors",
296
+ "transformer.h.15.moe.experts.11.c_proj.weight": "model-00004-of-00006.safetensors",
297
+ "transformer.h.15.moe.experts.12.c_fc.bias": "model-00004-of-00006.safetensors",
298
+ "transformer.h.15.moe.experts.12.c_fc.weight": "model-00004-of-00006.safetensors",
299
+ "transformer.h.15.moe.experts.12.c_proj.bias": "model-00004-of-00006.safetensors",
300
+ "transformer.h.15.moe.experts.12.c_proj.weight": "model-00004-of-00006.safetensors",
301
+ "transformer.h.15.moe.experts.13.c_fc.bias": "model-00004-of-00006.safetensors",
302
+ "transformer.h.15.moe.experts.13.c_fc.weight": "model-00004-of-00006.safetensors",
303
+ "transformer.h.15.moe.experts.13.c_proj.bias": "model-00004-of-00006.safetensors",
304
+ "transformer.h.15.moe.experts.13.c_proj.weight": "model-00004-of-00006.safetensors",
305
+ "transformer.h.15.moe.experts.14.c_fc.bias": "model-00005-of-00006.safetensors",
306
+ "transformer.h.15.moe.experts.14.c_fc.weight": "model-00005-of-00006.safetensors",
307
+ "transformer.h.15.moe.experts.14.c_proj.bias": "model-00005-of-00006.safetensors",
308
+ "transformer.h.15.moe.experts.14.c_proj.weight": "model-00005-of-00006.safetensors",
309
+ "transformer.h.15.moe.experts.15.c_fc.bias": "model-00005-of-00006.safetensors",
310
+ "transformer.h.15.moe.experts.15.c_fc.weight": "model-00005-of-00006.safetensors",
311
+ "transformer.h.15.moe.experts.15.c_proj.bias": "model-00005-of-00006.safetensors",
312
+ "transformer.h.15.moe.experts.15.c_proj.weight": "model-00005-of-00006.safetensors",
313
+ "transformer.h.15.moe.experts.2.c_fc.bias": "model-00004-of-00006.safetensors",
314
+ "transformer.h.15.moe.experts.2.c_fc.weight": "model-00004-of-00006.safetensors",
315
+ "transformer.h.15.moe.experts.2.c_proj.bias": "model-00004-of-00006.safetensors",
316
+ "transformer.h.15.moe.experts.2.c_proj.weight": "model-00004-of-00006.safetensors",
317
+ "transformer.h.15.moe.experts.3.c_fc.bias": "model-00004-of-00006.safetensors",
318
+ "transformer.h.15.moe.experts.3.c_fc.weight": "model-00004-of-00006.safetensors",
319
+ "transformer.h.15.moe.experts.3.c_proj.bias": "model-00004-of-00006.safetensors",
320
+ "transformer.h.15.moe.experts.3.c_proj.weight": "model-00004-of-00006.safetensors",
321
+ "transformer.h.15.moe.experts.4.c_fc.bias": "model-00004-of-00006.safetensors",
322
+ "transformer.h.15.moe.experts.4.c_fc.weight": "model-00004-of-00006.safetensors",
323
+ "transformer.h.15.moe.experts.4.c_proj.bias": "model-00004-of-00006.safetensors",
324
+ "transformer.h.15.moe.experts.4.c_proj.weight": "model-00004-of-00006.safetensors",
325
+ "transformer.h.15.moe.experts.5.c_fc.bias": "model-00004-of-00006.safetensors",
326
+ "transformer.h.15.moe.experts.5.c_fc.weight": "model-00004-of-00006.safetensors",
327
+ "transformer.h.15.moe.experts.5.c_proj.bias": "model-00004-of-00006.safetensors",
328
+ "transformer.h.15.moe.experts.5.c_proj.weight": "model-00004-of-00006.safetensors",
329
+ "transformer.h.15.moe.experts.6.c_fc.bias": "model-00004-of-00006.safetensors",
330
+ "transformer.h.15.moe.experts.6.c_fc.weight": "model-00004-of-00006.safetensors",
331
+ "transformer.h.15.moe.experts.6.c_proj.bias": "model-00004-of-00006.safetensors",
332
+ "transformer.h.15.moe.experts.6.c_proj.weight": "model-00004-of-00006.safetensors",
333
+ "transformer.h.15.moe.experts.7.c_fc.bias": "model-00004-of-00006.safetensors",
334
+ "transformer.h.15.moe.experts.7.c_fc.weight": "model-00004-of-00006.safetensors",
335
+ "transformer.h.15.moe.experts.7.c_proj.bias": "model-00004-of-00006.safetensors",
336
+ "transformer.h.15.moe.experts.7.c_proj.weight": "model-00004-of-00006.safetensors",
337
+ "transformer.h.15.moe.experts.8.c_fc.bias": "model-00004-of-00006.safetensors",
338
+ "transformer.h.15.moe.experts.8.c_fc.weight": "model-00004-of-00006.safetensors",
339
+ "transformer.h.15.moe.experts.8.c_proj.bias": "model-00004-of-00006.safetensors",
340
+ "transformer.h.15.moe.experts.8.c_proj.weight": "model-00004-of-00006.safetensors",
341
+ "transformer.h.15.moe.experts.9.c_fc.bias": "model-00004-of-00006.safetensors",
342
+ "transformer.h.15.moe.experts.9.c_fc.weight": "model-00004-of-00006.safetensors",
343
+ "transformer.h.15.moe.experts.9.c_proj.bias": "model-00004-of-00006.safetensors",
344
+ "transformer.h.15.moe.experts.9.c_proj.weight": "model-00004-of-00006.safetensors",
345
+ "transformer.h.15.moe.gate.weight": "model-00004-of-00006.safetensors",
346
+ "transformer.h.16.attn.c_attn.bias": "model-00005-of-00006.safetensors",
347
+ "transformer.h.16.attn.c_attn.weight": "model-00005-of-00006.safetensors",
348
+ "transformer.h.16.attn.c_proj.bias": "model-00005-of-00006.safetensors",
349
+ "transformer.h.16.attn.c_proj.weight": "model-00005-of-00006.safetensors",
350
+ "transformer.h.16.ln_1.bias": "model-00005-of-00006.safetensors",
351
+ "transformer.h.16.ln_1.weight": "model-00005-of-00006.safetensors",
352
+ "transformer.h.16.ln_2.bias": "model-00005-of-00006.safetensors",
353
+ "transformer.h.16.ln_2.weight": "model-00005-of-00006.safetensors",
354
+ "transformer.h.16.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
355
+ "transformer.h.16.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
356
+ "transformer.h.16.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
357
+ "transformer.h.16.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
358
+ "transformer.h.17.attn.c_attn.bias": "model-00005-of-00006.safetensors",
359
+ "transformer.h.17.attn.c_attn.weight": "model-00005-of-00006.safetensors",
360
+ "transformer.h.17.attn.c_proj.bias": "model-00005-of-00006.safetensors",
361
+ "transformer.h.17.attn.c_proj.weight": "model-00005-of-00006.safetensors",
362
+ "transformer.h.17.ln_1.bias": "model-00005-of-00006.safetensors",
363
+ "transformer.h.17.ln_1.weight": "model-00005-of-00006.safetensors",
364
+ "transformer.h.17.ln_2.bias": "model-00005-of-00006.safetensors",
365
+ "transformer.h.17.ln_2.weight": "model-00005-of-00006.safetensors",
366
+ "transformer.h.17.moe.experts.0.c_fc.bias": "model-00005-of-00006.safetensors",
367
+ "transformer.h.17.moe.experts.0.c_fc.weight": "model-00005-of-00006.safetensors",
368
+ "transformer.h.17.moe.experts.0.c_proj.bias": "model-00005-of-00006.safetensors",
369
+ "transformer.h.17.moe.experts.0.c_proj.weight": "model-00005-of-00006.safetensors",
370
+ "transformer.h.17.moe.experts.1.c_fc.bias": "model-00005-of-00006.safetensors",
371
+ "transformer.h.17.moe.experts.1.c_fc.weight": "model-00005-of-00006.safetensors",
372
+ "transformer.h.17.moe.experts.1.c_proj.bias": "model-00005-of-00006.safetensors",
373
+ "transformer.h.17.moe.experts.1.c_proj.weight": "model-00005-of-00006.safetensors",
374
+ "transformer.h.17.moe.experts.10.c_fc.bias": "model-00005-of-00006.safetensors",
375
+ "transformer.h.17.moe.experts.10.c_fc.weight": "model-00005-of-00006.safetensors",
376
+ "transformer.h.17.moe.experts.10.c_proj.bias": "model-00005-of-00006.safetensors",
377
+ "transformer.h.17.moe.experts.10.c_proj.weight": "model-00005-of-00006.safetensors",
378
+ "transformer.h.17.moe.experts.11.c_fc.bias": "model-00005-of-00006.safetensors",
379
+ "transformer.h.17.moe.experts.11.c_fc.weight": "model-00005-of-00006.safetensors",
380
+ "transformer.h.17.moe.experts.11.c_proj.bias": "model-00005-of-00006.safetensors",
381
+ "transformer.h.17.moe.experts.11.c_proj.weight": "model-00005-of-00006.safetensors",
382
+ "transformer.h.17.moe.experts.12.c_fc.bias": "model-00005-of-00006.safetensors",
383
+ "transformer.h.17.moe.experts.12.c_fc.weight": "model-00005-of-00006.safetensors",
384
+ "transformer.h.17.moe.experts.12.c_proj.bias": "model-00005-of-00006.safetensors",
385
+ "transformer.h.17.moe.experts.12.c_proj.weight": "model-00005-of-00006.safetensors",
386
+ "transformer.h.17.moe.experts.13.c_fc.bias": "model-00005-of-00006.safetensors",
387
+ "transformer.h.17.moe.experts.13.c_fc.weight": "model-00005-of-00006.safetensors",
388
+ "transformer.h.17.moe.experts.13.c_proj.bias": "model-00005-of-00006.safetensors",
389
+ "transformer.h.17.moe.experts.13.c_proj.weight": "model-00005-of-00006.safetensors",
390
+ "transformer.h.17.moe.experts.14.c_fc.bias": "model-00005-of-00006.safetensors",
391
+ "transformer.h.17.moe.experts.14.c_fc.weight": "model-00005-of-00006.safetensors",
392
+ "transformer.h.17.moe.experts.14.c_proj.bias": "model-00005-of-00006.safetensors",
393
+ "transformer.h.17.moe.experts.14.c_proj.weight": "model-00005-of-00006.safetensors",
394
+ "transformer.h.17.moe.experts.15.c_fc.bias": "model-00005-of-00006.safetensors",
395
+ "transformer.h.17.moe.experts.15.c_fc.weight": "model-00005-of-00006.safetensors",
396
+ "transformer.h.17.moe.experts.15.c_proj.bias": "model-00005-of-00006.safetensors",
397
+ "transformer.h.17.moe.experts.15.c_proj.weight": "model-00005-of-00006.safetensors",
398
+ "transformer.h.17.moe.experts.2.c_fc.bias": "model-00005-of-00006.safetensors",
399
+ "transformer.h.17.moe.experts.2.c_fc.weight": "model-00005-of-00006.safetensors",
400
+ "transformer.h.17.moe.experts.2.c_proj.bias": "model-00005-of-00006.safetensors",
401
+ "transformer.h.17.moe.experts.2.c_proj.weight": "model-00005-of-00006.safetensors",
402
+ "transformer.h.17.moe.experts.3.c_fc.bias": "model-00005-of-00006.safetensors",
403
+ "transformer.h.17.moe.experts.3.c_fc.weight": "model-00005-of-00006.safetensors",
404
+ "transformer.h.17.moe.experts.3.c_proj.bias": "model-00005-of-00006.safetensors",
405
+ "transformer.h.17.moe.experts.3.c_proj.weight": "model-00005-of-00006.safetensors",
406
+ "transformer.h.17.moe.experts.4.c_fc.bias": "model-00005-of-00006.safetensors",
407
+ "transformer.h.17.moe.experts.4.c_fc.weight": "model-00005-of-00006.safetensors",
408
+ "transformer.h.17.moe.experts.4.c_proj.bias": "model-00005-of-00006.safetensors",
409
+ "transformer.h.17.moe.experts.4.c_proj.weight": "model-00005-of-00006.safetensors",
410
+ "transformer.h.17.moe.experts.5.c_fc.bias": "model-00005-of-00006.safetensors",
411
+ "transformer.h.17.moe.experts.5.c_fc.weight": "model-00005-of-00006.safetensors",
412
+ "transformer.h.17.moe.experts.5.c_proj.bias": "model-00005-of-00006.safetensors",
413
+ "transformer.h.17.moe.experts.5.c_proj.weight": "model-00005-of-00006.safetensors",
414
+ "transformer.h.17.moe.experts.6.c_fc.bias": "model-00005-of-00006.safetensors",
415
+ "transformer.h.17.moe.experts.6.c_fc.weight": "model-00005-of-00006.safetensors",
416
+ "transformer.h.17.moe.experts.6.c_proj.bias": "model-00005-of-00006.safetensors",
417
+ "transformer.h.17.moe.experts.6.c_proj.weight": "model-00005-of-00006.safetensors",
418
+ "transformer.h.17.moe.experts.7.c_fc.bias": "model-00005-of-00006.safetensors",
419
+ "transformer.h.17.moe.experts.7.c_fc.weight": "model-00005-of-00006.safetensors",
420
+ "transformer.h.17.moe.experts.7.c_proj.bias": "model-00005-of-00006.safetensors",
421
+ "transformer.h.17.moe.experts.7.c_proj.weight": "model-00005-of-00006.safetensors",
422
+ "transformer.h.17.moe.experts.8.c_fc.bias": "model-00005-of-00006.safetensors",
423
+ "transformer.h.17.moe.experts.8.c_fc.weight": "model-00005-of-00006.safetensors",
424
+ "transformer.h.17.moe.experts.8.c_proj.bias": "model-00005-of-00006.safetensors",
425
+ "transformer.h.17.moe.experts.8.c_proj.weight": "model-00005-of-00006.safetensors",
426
+ "transformer.h.17.moe.experts.9.c_fc.bias": "model-00005-of-00006.safetensors",
427
+ "transformer.h.17.moe.experts.9.c_fc.weight": "model-00005-of-00006.safetensors",
428
+ "transformer.h.17.moe.experts.9.c_proj.bias": "model-00005-of-00006.safetensors",
429
+ "transformer.h.17.moe.experts.9.c_proj.weight": "model-00005-of-00006.safetensors",
430
+ "transformer.h.17.moe.gate.weight": "model-00005-of-00006.safetensors",
431
+ "transformer.h.18.attn.c_attn.bias": "model-00005-of-00006.safetensors",
432
+ "transformer.h.18.attn.c_attn.weight": "model-00005-of-00006.safetensors",
433
+ "transformer.h.18.attn.c_proj.bias": "model-00005-of-00006.safetensors",
434
+ "transformer.h.18.attn.c_proj.weight": "model-00005-of-00006.safetensors",
435
+ "transformer.h.18.ln_1.bias": "model-00005-of-00006.safetensors",
436
+ "transformer.h.18.ln_1.weight": "model-00005-of-00006.safetensors",
437
+ "transformer.h.18.ln_2.bias": "model-00005-of-00006.safetensors",
438
+ "transformer.h.18.ln_2.weight": "model-00005-of-00006.safetensors",
439
+ "transformer.h.18.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
440
+ "transformer.h.18.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
441
+ "transformer.h.18.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
442
+ "transformer.h.18.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
443
+ "transformer.h.19.attn.c_attn.bias": "model-00005-of-00006.safetensors",
444
+ "transformer.h.19.attn.c_attn.weight": "model-00005-of-00006.safetensors",
445
+ "transformer.h.19.attn.c_proj.bias": "model-00005-of-00006.safetensors",
446
+ "transformer.h.19.attn.c_proj.weight": "model-00005-of-00006.safetensors",
447
+ "transformer.h.19.ln_1.bias": "model-00005-of-00006.safetensors",
448
+ "transformer.h.19.ln_1.weight": "model-00005-of-00006.safetensors",
449
+ "transformer.h.19.ln_2.bias": "model-00005-of-00006.safetensors",
450
+ "transformer.h.19.ln_2.weight": "model-00005-of-00006.safetensors",
451
+ "transformer.h.19.moe.experts.0.c_fc.bias": "model-00005-of-00006.safetensors",
452
+ "transformer.h.19.moe.experts.0.c_fc.weight": "model-00005-of-00006.safetensors",
453
+ "transformer.h.19.moe.experts.0.c_proj.bias": "model-00005-of-00006.safetensors",
454
+ "transformer.h.19.moe.experts.0.c_proj.weight": "model-00005-of-00006.safetensors",
455
+ "transformer.h.19.moe.experts.1.c_fc.bias": "model-00005-of-00006.safetensors",
456
+ "transformer.h.19.moe.experts.1.c_fc.weight": "model-00005-of-00006.safetensors",
457
+ "transformer.h.19.moe.experts.1.c_proj.bias": "model-00005-of-00006.safetensors",
458
+ "transformer.h.19.moe.experts.1.c_proj.weight": "model-00005-of-00006.safetensors",
459
+ "transformer.h.19.moe.experts.10.c_fc.bias": "model-00005-of-00006.safetensors",
460
+ "transformer.h.19.moe.experts.10.c_fc.weight": "model-00005-of-00006.safetensors",
461
+ "transformer.h.19.moe.experts.10.c_proj.bias": "model-00005-of-00006.safetensors",
462
+ "transformer.h.19.moe.experts.10.c_proj.weight": "model-00005-of-00006.safetensors",
463
+ "transformer.h.19.moe.experts.11.c_fc.bias": "model-00005-of-00006.safetensors",
464
+ "transformer.h.19.moe.experts.11.c_fc.weight": "model-00005-of-00006.safetensors",
465
+ "transformer.h.19.moe.experts.11.c_proj.bias": "model-00005-of-00006.safetensors",
466
+ "transformer.h.19.moe.experts.11.c_proj.weight": "model-00005-of-00006.safetensors",
467
+ "transformer.h.19.moe.experts.12.c_fc.bias": "model-00005-of-00006.safetensors",
468
+ "transformer.h.19.moe.experts.12.c_fc.weight": "model-00005-of-00006.safetensors",
469
+ "transformer.h.19.moe.experts.12.c_proj.bias": "model-00005-of-00006.safetensors",
470
+ "transformer.h.19.moe.experts.12.c_proj.weight": "model-00005-of-00006.safetensors",
471
+ "transformer.h.19.moe.experts.13.c_fc.bias": "model-00005-of-00006.safetensors",
472
+ "transformer.h.19.moe.experts.13.c_fc.weight": "model-00005-of-00006.safetensors",
473
+ "transformer.h.19.moe.experts.13.c_proj.bias": "model-00005-of-00006.safetensors",
474
+ "transformer.h.19.moe.experts.13.c_proj.weight": "model-00005-of-00006.safetensors",
475
+ "transformer.h.19.moe.experts.14.c_fc.bias": "model-00005-of-00006.safetensors",
476
+ "transformer.h.19.moe.experts.14.c_fc.weight": "model-00005-of-00006.safetensors",
477
+ "transformer.h.19.moe.experts.14.c_proj.bias": "model-00005-of-00006.safetensors",
478
+ "transformer.h.19.moe.experts.14.c_proj.weight": "model-00005-of-00006.safetensors",
479
+ "transformer.h.19.moe.experts.15.c_fc.bias": "model-00006-of-00006.safetensors",
480
+ "transformer.h.19.moe.experts.15.c_fc.weight": "model-00006-of-00006.safetensors",
481
+ "transformer.h.19.moe.experts.15.c_proj.bias": "model-00006-of-00006.safetensors",
482
+ "transformer.h.19.moe.experts.15.c_proj.weight": "model-00006-of-00006.safetensors",
483
+ "transformer.h.19.moe.experts.2.c_fc.bias": "model-00005-of-00006.safetensors",
484
+ "transformer.h.19.moe.experts.2.c_fc.weight": "model-00005-of-00006.safetensors",
485
+ "transformer.h.19.moe.experts.2.c_proj.bias": "model-00005-of-00006.safetensors",
486
+ "transformer.h.19.moe.experts.2.c_proj.weight": "model-00005-of-00006.safetensors",
487
+ "transformer.h.19.moe.experts.3.c_fc.bias": "model-00005-of-00006.safetensors",
488
+ "transformer.h.19.moe.experts.3.c_fc.weight": "model-00005-of-00006.safetensors",
489
+ "transformer.h.19.moe.experts.3.c_proj.bias": "model-00005-of-00006.safetensors",
490
+ "transformer.h.19.moe.experts.3.c_proj.weight": "model-00005-of-00006.safetensors",
491
+ "transformer.h.19.moe.experts.4.c_fc.bias": "model-00005-of-00006.safetensors",
492
+ "transformer.h.19.moe.experts.4.c_fc.weight": "model-00005-of-00006.safetensors",
493
+ "transformer.h.19.moe.experts.4.c_proj.bias": "model-00005-of-00006.safetensors",
494
+ "transformer.h.19.moe.experts.4.c_proj.weight": "model-00005-of-00006.safetensors",
495
+ "transformer.h.19.moe.experts.5.c_fc.bias": "model-00005-of-00006.safetensors",
496
+ "transformer.h.19.moe.experts.5.c_fc.weight": "model-00005-of-00006.safetensors",
497
+ "transformer.h.19.moe.experts.5.c_proj.bias": "model-00005-of-00006.safetensors",
498
+ "transformer.h.19.moe.experts.5.c_proj.weight": "model-00005-of-00006.safetensors",
499
+ "transformer.h.19.moe.experts.6.c_fc.bias": "model-00005-of-00006.safetensors",
500
+ "transformer.h.19.moe.experts.6.c_fc.weight": "model-00005-of-00006.safetensors",
501
+ "transformer.h.19.moe.experts.6.c_proj.bias": "model-00005-of-00006.safetensors",
502
+ "transformer.h.19.moe.experts.6.c_proj.weight": "model-00005-of-00006.safetensors",
503
+ "transformer.h.19.moe.experts.7.c_fc.bias": "model-00005-of-00006.safetensors",
504
+ "transformer.h.19.moe.experts.7.c_fc.weight": "model-00005-of-00006.safetensors",
505
+ "transformer.h.19.moe.experts.7.c_proj.bias": "model-00005-of-00006.safetensors",
506
+ "transformer.h.19.moe.experts.7.c_proj.weight": "model-00005-of-00006.safetensors",
507
+ "transformer.h.19.moe.experts.8.c_fc.bias": "model-00005-of-00006.safetensors",
508
+ "transformer.h.19.moe.experts.8.c_fc.weight": "model-00005-of-00006.safetensors",
509
+ "transformer.h.19.moe.experts.8.c_proj.bias": "model-00005-of-00006.safetensors",
510
+ "transformer.h.19.moe.experts.8.c_proj.weight": "model-00005-of-00006.safetensors",
511
+ "transformer.h.19.moe.experts.9.c_fc.bias": "model-00005-of-00006.safetensors",
512
+ "transformer.h.19.moe.experts.9.c_fc.weight": "model-00005-of-00006.safetensors",
513
+ "transformer.h.19.moe.experts.9.c_proj.bias": "model-00005-of-00006.safetensors",
514
+ "transformer.h.19.moe.experts.9.c_proj.weight": "model-00005-of-00006.safetensors",
515
+ "transformer.h.19.moe.gate.weight": "model-00005-of-00006.safetensors",
516
+ "transformer.h.2.attn.c_attn.bias": "model-00001-of-00006.safetensors",
517
+ "transformer.h.2.attn.c_attn.weight": "model-00001-of-00006.safetensors",
518
+ "transformer.h.2.attn.c_proj.bias": "model-00001-of-00006.safetensors",
519
+ "transformer.h.2.attn.c_proj.weight": "model-00001-of-00006.safetensors",
520
+ "transformer.h.2.ln_1.bias": "model-00001-of-00006.safetensors",
521
+ "transformer.h.2.ln_1.weight": "model-00001-of-00006.safetensors",
522
+ "transformer.h.2.ln_2.bias": "model-00001-of-00006.safetensors",
523
+ "transformer.h.2.ln_2.weight": "model-00001-of-00006.safetensors",
524
+ "transformer.h.2.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
525
+ "transformer.h.2.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
526
+ "transformer.h.2.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
527
+ "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
528
+ "transformer.h.20.attn.c_attn.bias": "model-00006-of-00006.safetensors",
529
+ "transformer.h.20.attn.c_attn.weight": "model-00006-of-00006.safetensors",
530
+ "transformer.h.20.attn.c_proj.bias": "model-00006-of-00006.safetensors",
531
+ "transformer.h.20.attn.c_proj.weight": "model-00006-of-00006.safetensors",
532
+ "transformer.h.20.ln_1.bias": "model-00006-of-00006.safetensors",
533
+ "transformer.h.20.ln_1.weight": "model-00006-of-00006.safetensors",
534
+ "transformer.h.20.ln_2.bias": "model-00006-of-00006.safetensors",
535
+ "transformer.h.20.ln_2.weight": "model-00006-of-00006.safetensors",
536
+ "transformer.h.20.mlp.c_fc.bias": "model-00006-of-00006.safetensors",
537
+ "transformer.h.20.mlp.c_fc.weight": "model-00006-of-00006.safetensors",
538
+ "transformer.h.20.mlp.c_proj.bias": "model-00006-of-00006.safetensors",
539
+ "transformer.h.20.mlp.c_proj.weight": "model-00006-of-00006.safetensors",
540
+ "transformer.h.21.attn.c_attn.bias": "model-00006-of-00006.safetensors",
541
+ "transformer.h.21.attn.c_attn.weight": "model-00006-of-00006.safetensors",
542
+ "transformer.h.21.attn.c_proj.bias": "model-00006-of-00006.safetensors",
543
+ "transformer.h.21.attn.c_proj.weight": "model-00006-of-00006.safetensors",
544
+ "transformer.h.21.ln_1.bias": "model-00006-of-00006.safetensors",
545
+ "transformer.h.21.ln_1.weight": "model-00006-of-00006.safetensors",
546
+ "transformer.h.21.ln_2.bias": "model-00006-of-00006.safetensors",
547
+ "transformer.h.21.ln_2.weight": "model-00006-of-00006.safetensors",
548
+ "transformer.h.21.moe.experts.0.c_fc.bias": "model-00006-of-00006.safetensors",
549
+ "transformer.h.21.moe.experts.0.c_fc.weight": "model-00006-of-00006.safetensors",
550
+ "transformer.h.21.moe.experts.0.c_proj.bias": "model-00006-of-00006.safetensors",
551
+ "transformer.h.21.moe.experts.0.c_proj.weight": "model-00006-of-00006.safetensors",
552
+ "transformer.h.21.moe.experts.1.c_fc.bias": "model-00006-of-00006.safetensors",
553
+ "transformer.h.21.moe.experts.1.c_fc.weight": "model-00006-of-00006.safetensors",
554
+ "transformer.h.21.moe.experts.1.c_proj.bias": "model-00006-of-00006.safetensors",
555
+ "transformer.h.21.moe.experts.1.c_proj.weight": "model-00006-of-00006.safetensors",
556
+ "transformer.h.21.moe.experts.10.c_fc.bias": "model-00006-of-00006.safetensors",
557
+ "transformer.h.21.moe.experts.10.c_fc.weight": "model-00006-of-00006.safetensors",
558
+ "transformer.h.21.moe.experts.10.c_proj.bias": "model-00006-of-00006.safetensors",
559
+ "transformer.h.21.moe.experts.10.c_proj.weight": "model-00006-of-00006.safetensors",
560
+ "transformer.h.21.moe.experts.11.c_fc.bias": "model-00006-of-00006.safetensors",
561
+ "transformer.h.21.moe.experts.11.c_fc.weight": "model-00006-of-00006.safetensors",
562
+ "transformer.h.21.moe.experts.11.c_proj.bias": "model-00006-of-00006.safetensors",
563
+ "transformer.h.21.moe.experts.11.c_proj.weight": "model-00006-of-00006.safetensors",
564
+ "transformer.h.21.moe.experts.12.c_fc.bias": "model-00006-of-00006.safetensors",
565
+ "transformer.h.21.moe.experts.12.c_fc.weight": "model-00006-of-00006.safetensors",
566
+ "transformer.h.21.moe.experts.12.c_proj.bias": "model-00006-of-00006.safetensors",
567
+ "transformer.h.21.moe.experts.12.c_proj.weight": "model-00006-of-00006.safetensors",
568
+ "transformer.h.21.moe.experts.13.c_fc.bias": "model-00006-of-00006.safetensors",
569
+ "transformer.h.21.moe.experts.13.c_fc.weight": "model-00006-of-00006.safetensors",
570
+ "transformer.h.21.moe.experts.13.c_proj.bias": "model-00006-of-00006.safetensors",
571
+ "transformer.h.21.moe.experts.13.c_proj.weight": "model-00006-of-00006.safetensors",
572
+ "transformer.h.21.moe.experts.14.c_fc.bias": "model-00006-of-00006.safetensors",
573
+ "transformer.h.21.moe.experts.14.c_fc.weight": "model-00006-of-00006.safetensors",
574
+ "transformer.h.21.moe.experts.14.c_proj.bias": "model-00006-of-00006.safetensors",
575
+ "transformer.h.21.moe.experts.14.c_proj.weight": "model-00006-of-00006.safetensors",
576
+ "transformer.h.21.moe.experts.15.c_fc.bias": "model-00006-of-00006.safetensors",
577
+ "transformer.h.21.moe.experts.15.c_fc.weight": "model-00006-of-00006.safetensors",
578
+ "transformer.h.21.moe.experts.15.c_proj.bias": "model-00006-of-00006.safetensors",
579
+ "transformer.h.21.moe.experts.15.c_proj.weight": "model-00006-of-00006.safetensors",
580
+ "transformer.h.21.moe.experts.2.c_fc.bias": "model-00006-of-00006.safetensors",
581
+ "transformer.h.21.moe.experts.2.c_fc.weight": "model-00006-of-00006.safetensors",
582
+ "transformer.h.21.moe.experts.2.c_proj.bias": "model-00006-of-00006.safetensors",
583
+ "transformer.h.21.moe.experts.2.c_proj.weight": "model-00006-of-00006.safetensors",
584
+ "transformer.h.21.moe.experts.3.c_fc.bias": "model-00006-of-00006.safetensors",
585
+ "transformer.h.21.moe.experts.3.c_fc.weight": "model-00006-of-00006.safetensors",
586
+ "transformer.h.21.moe.experts.3.c_proj.bias": "model-00006-of-00006.safetensors",
587
+ "transformer.h.21.moe.experts.3.c_proj.weight": "model-00006-of-00006.safetensors",
588
+ "transformer.h.21.moe.experts.4.c_fc.bias": "model-00006-of-00006.safetensors",
589
+ "transformer.h.21.moe.experts.4.c_fc.weight": "model-00006-of-00006.safetensors",
590
+ "transformer.h.21.moe.experts.4.c_proj.bias": "model-00006-of-00006.safetensors",
591
+ "transformer.h.21.moe.experts.4.c_proj.weight": "model-00006-of-00006.safetensors",
592
+ "transformer.h.21.moe.experts.5.c_fc.bias": "model-00006-of-00006.safetensors",
593
+ "transformer.h.21.moe.experts.5.c_fc.weight": "model-00006-of-00006.safetensors",
594
+ "transformer.h.21.moe.experts.5.c_proj.bias": "model-00006-of-00006.safetensors",
595
+ "transformer.h.21.moe.experts.5.c_proj.weight": "model-00006-of-00006.safetensors",
596
+ "transformer.h.21.moe.experts.6.c_fc.bias": "model-00006-of-00006.safetensors",
597
+ "transformer.h.21.moe.experts.6.c_fc.weight": "model-00006-of-00006.safetensors",
598
+ "transformer.h.21.moe.experts.6.c_proj.bias": "model-00006-of-00006.safetensors",
599
+ "transformer.h.21.moe.experts.6.c_proj.weight": "model-00006-of-00006.safetensors",
600
+ "transformer.h.21.moe.experts.7.c_fc.bias": "model-00006-of-00006.safetensors",
601
+ "transformer.h.21.moe.experts.7.c_fc.weight": "model-00006-of-00006.safetensors",
602
+ "transformer.h.21.moe.experts.7.c_proj.bias": "model-00006-of-00006.safetensors",
603
+ "transformer.h.21.moe.experts.7.c_proj.weight": "model-00006-of-00006.safetensors",
604
+ "transformer.h.21.moe.experts.8.c_fc.bias": "model-00006-of-00006.safetensors",
605
+ "transformer.h.21.moe.experts.8.c_fc.weight": "model-00006-of-00006.safetensors",
606
+ "transformer.h.21.moe.experts.8.c_proj.bias": "model-00006-of-00006.safetensors",
607
+ "transformer.h.21.moe.experts.8.c_proj.weight": "model-00006-of-00006.safetensors",
608
+ "transformer.h.21.moe.experts.9.c_fc.bias": "model-00006-of-00006.safetensors",
609
+ "transformer.h.21.moe.experts.9.c_fc.weight": "model-00006-of-00006.safetensors",
610
+ "transformer.h.21.moe.experts.9.c_proj.bias": "model-00006-of-00006.safetensors",
611
+ "transformer.h.21.moe.experts.9.c_proj.weight": "model-00006-of-00006.safetensors",
612
+ "transformer.h.21.moe.gate.weight": "model-00006-of-00006.safetensors",
613
+ "transformer.h.22.attn.c_attn.bias": "model-00006-of-00006.safetensors",
614
+ "transformer.h.22.attn.c_attn.weight": "model-00006-of-00006.safetensors",
615
+ "transformer.h.22.attn.c_proj.bias": "model-00006-of-00006.safetensors",
616
+ "transformer.h.22.attn.c_proj.weight": "model-00006-of-00006.safetensors",
617
+ "transformer.h.22.ln_1.bias": "model-00006-of-00006.safetensors",
618
+ "transformer.h.22.ln_1.weight": "model-00006-of-00006.safetensors",
619
+ "transformer.h.22.ln_2.bias": "model-00006-of-00006.safetensors",
620
+ "transformer.h.22.ln_2.weight": "model-00006-of-00006.safetensors",
621
+ "transformer.h.22.mlp.c_fc.bias": "model-00006-of-00006.safetensors",
622
+ "transformer.h.22.mlp.c_fc.weight": "model-00006-of-00006.safetensors",
623
+ "transformer.h.22.mlp.c_proj.bias": "model-00006-of-00006.safetensors",
624
+ "transformer.h.22.mlp.c_proj.weight": "model-00006-of-00006.safetensors",
625
+ "transformer.h.23.attn.c_attn.bias": "model-00006-of-00006.safetensors",
626
+ "transformer.h.23.attn.c_attn.weight": "model-00006-of-00006.safetensors",
627
+ "transformer.h.23.attn.c_proj.bias": "model-00006-of-00006.safetensors",
628
+ "transformer.h.23.attn.c_proj.weight": "model-00006-of-00006.safetensors",
629
+ "transformer.h.23.ln_1.bias": "model-00006-of-00006.safetensors",
630
+ "transformer.h.23.ln_1.weight": "model-00006-of-00006.safetensors",
631
+ "transformer.h.23.ln_2.bias": "model-00006-of-00006.safetensors",
632
+ "transformer.h.23.ln_2.weight": "model-00006-of-00006.safetensors",
633
+ "transformer.h.23.moe.experts.0.c_fc.bias": "model-00006-of-00006.safetensors",
634
+ "transformer.h.23.moe.experts.0.c_fc.weight": "model-00006-of-00006.safetensors",
635
+ "transformer.h.23.moe.experts.0.c_proj.bias": "model-00006-of-00006.safetensors",
636
+ "transformer.h.23.moe.experts.0.c_proj.weight": "model-00006-of-00006.safetensors",
637
+ "transformer.h.23.moe.experts.1.c_fc.bias": "model-00006-of-00006.safetensors",
638
+ "transformer.h.23.moe.experts.1.c_fc.weight": "model-00006-of-00006.safetensors",
639
+ "transformer.h.23.moe.experts.1.c_proj.bias": "model-00006-of-00006.safetensors",
640
+ "transformer.h.23.moe.experts.1.c_proj.weight": "model-00006-of-00006.safetensors",
641
+ "transformer.h.23.moe.experts.10.c_fc.bias": "model-00006-of-00006.safetensors",
642
+ "transformer.h.23.moe.experts.10.c_fc.weight": "model-00006-of-00006.safetensors",
643
+ "transformer.h.23.moe.experts.10.c_proj.bias": "model-00006-of-00006.safetensors",
644
+ "transformer.h.23.moe.experts.10.c_proj.weight": "model-00006-of-00006.safetensors",
645
+ "transformer.h.23.moe.experts.11.c_fc.bias": "model-00006-of-00006.safetensors",
646
+ "transformer.h.23.moe.experts.11.c_fc.weight": "model-00006-of-00006.safetensors",
647
+ "transformer.h.23.moe.experts.11.c_proj.bias": "model-00006-of-00006.safetensors",
648
+ "transformer.h.23.moe.experts.11.c_proj.weight": "model-00006-of-00006.safetensors",
649
+ "transformer.h.23.moe.experts.12.c_fc.bias": "model-00006-of-00006.safetensors",
650
+ "transformer.h.23.moe.experts.12.c_fc.weight": "model-00006-of-00006.safetensors",
651
+ "transformer.h.23.moe.experts.12.c_proj.bias": "model-00006-of-00006.safetensors",
652
+ "transformer.h.23.moe.experts.12.c_proj.weight": "model-00006-of-00006.safetensors",
653
+ "transformer.h.23.moe.experts.13.c_fc.bias": "model-00006-of-00006.safetensors",
654
+ "transformer.h.23.moe.experts.13.c_fc.weight": "model-00006-of-00006.safetensors",
655
+ "transformer.h.23.moe.experts.13.c_proj.bias": "model-00006-of-00006.safetensors",
656
+ "transformer.h.23.moe.experts.13.c_proj.weight": "model-00006-of-00006.safetensors",
657
+ "transformer.h.23.moe.experts.14.c_fc.bias": "model-00006-of-00006.safetensors",
658
+ "transformer.h.23.moe.experts.14.c_fc.weight": "model-00006-of-00006.safetensors",
659
+ "transformer.h.23.moe.experts.14.c_proj.bias": "model-00006-of-00006.safetensors",
660
+ "transformer.h.23.moe.experts.14.c_proj.weight": "model-00006-of-00006.safetensors",
661
+ "transformer.h.23.moe.experts.15.c_fc.bias": "model-00006-of-00006.safetensors",
662
+ "transformer.h.23.moe.experts.15.c_fc.weight": "model-00006-of-00006.safetensors",
663
+ "transformer.h.23.moe.experts.15.c_proj.bias": "model-00006-of-00006.safetensors",
664
+ "transformer.h.23.moe.experts.15.c_proj.weight": "model-00006-of-00006.safetensors",
665
+ "transformer.h.23.moe.experts.2.c_fc.bias": "model-00006-of-00006.safetensors",
666
+ "transformer.h.23.moe.experts.2.c_fc.weight": "model-00006-of-00006.safetensors",
667
+ "transformer.h.23.moe.experts.2.c_proj.bias": "model-00006-of-00006.safetensors",
668
+ "transformer.h.23.moe.experts.2.c_proj.weight": "model-00006-of-00006.safetensors",
669
+ "transformer.h.23.moe.experts.3.c_fc.bias": "model-00006-of-00006.safetensors",
670
+ "transformer.h.23.moe.experts.3.c_fc.weight": "model-00006-of-00006.safetensors",
671
+ "transformer.h.23.moe.experts.3.c_proj.bias": "model-00006-of-00006.safetensors",
672
+ "transformer.h.23.moe.experts.3.c_proj.weight": "model-00006-of-00006.safetensors",
673
+ "transformer.h.23.moe.experts.4.c_fc.bias": "model-00006-of-00006.safetensors",
674
+ "transformer.h.23.moe.experts.4.c_fc.weight": "model-00006-of-00006.safetensors",
675
+ "transformer.h.23.moe.experts.4.c_proj.bias": "model-00006-of-00006.safetensors",
676
+ "transformer.h.23.moe.experts.4.c_proj.weight": "model-00006-of-00006.safetensors",
677
+ "transformer.h.23.moe.experts.5.c_fc.bias": "model-00006-of-00006.safetensors",
678
+ "transformer.h.23.moe.experts.5.c_fc.weight": "model-00006-of-00006.safetensors",
679
+ "transformer.h.23.moe.experts.5.c_proj.bias": "model-00006-of-00006.safetensors",
680
+ "transformer.h.23.moe.experts.5.c_proj.weight": "model-00006-of-00006.safetensors",
681
+ "transformer.h.23.moe.experts.6.c_fc.bias": "model-00006-of-00006.safetensors",
682
+ "transformer.h.23.moe.experts.6.c_fc.weight": "model-00006-of-00006.safetensors",
683
+ "transformer.h.23.moe.experts.6.c_proj.bias": "model-00006-of-00006.safetensors",
684
+ "transformer.h.23.moe.experts.6.c_proj.weight": "model-00006-of-00006.safetensors",
685
+ "transformer.h.23.moe.experts.7.c_fc.bias": "model-00006-of-00006.safetensors",
686
+ "transformer.h.23.moe.experts.7.c_fc.weight": "model-00006-of-00006.safetensors",
687
+ "transformer.h.23.moe.experts.7.c_proj.bias": "model-00006-of-00006.safetensors",
688
+ "transformer.h.23.moe.experts.7.c_proj.weight": "model-00006-of-00006.safetensors",
689
+ "transformer.h.23.moe.experts.8.c_fc.bias": "model-00006-of-00006.safetensors",
690
+ "transformer.h.23.moe.experts.8.c_fc.weight": "model-00006-of-00006.safetensors",
691
+ "transformer.h.23.moe.experts.8.c_proj.bias": "model-00006-of-00006.safetensors",
692
+ "transformer.h.23.moe.experts.8.c_proj.weight": "model-00006-of-00006.safetensors",
693
+ "transformer.h.23.moe.experts.9.c_fc.bias": "model-00006-of-00006.safetensors",
694
+ "transformer.h.23.moe.experts.9.c_fc.weight": "model-00006-of-00006.safetensors",
695
+ "transformer.h.23.moe.experts.9.c_proj.bias": "model-00006-of-00006.safetensors",
696
+ "transformer.h.23.moe.experts.9.c_proj.weight": "model-00006-of-00006.safetensors",
697
+ "transformer.h.23.moe.gate.weight": "model-00006-of-00006.safetensors",
698
+ "transformer.h.3.attn.c_attn.bias": "model-00001-of-00006.safetensors",
699
+ "transformer.h.3.attn.c_attn.weight": "model-00001-of-00006.safetensors",
700
+ "transformer.h.3.attn.c_proj.bias": "model-00001-of-00006.safetensors",
701
+ "transformer.h.3.attn.c_proj.weight": "model-00001-of-00006.safetensors",
702
+ "transformer.h.3.ln_1.bias": "model-00001-of-00006.safetensors",
703
+ "transformer.h.3.ln_1.weight": "model-00001-of-00006.safetensors",
704
+ "transformer.h.3.ln_2.bias": "model-00001-of-00006.safetensors",
705
+ "transformer.h.3.ln_2.weight": "model-00001-of-00006.safetensors",
706
+ "transformer.h.3.moe.experts.0.c_fc.bias": "model-00001-of-00006.safetensors",
707
+ "transformer.h.3.moe.experts.0.c_fc.weight": "model-00001-of-00006.safetensors",
708
+ "transformer.h.3.moe.experts.0.c_proj.bias": "model-00001-of-00006.safetensors",
709
+ "transformer.h.3.moe.experts.0.c_proj.weight": "model-00001-of-00006.safetensors",
710
+ "transformer.h.3.moe.experts.1.c_fc.bias": "model-00001-of-00006.safetensors",
711
+ "transformer.h.3.moe.experts.1.c_fc.weight": "model-00001-of-00006.safetensors",
712
+ "transformer.h.3.moe.experts.1.c_proj.bias": "model-00001-of-00006.safetensors",
713
+ "transformer.h.3.moe.experts.1.c_proj.weight": "model-00001-of-00006.safetensors",
714
+ "transformer.h.3.moe.experts.10.c_fc.bias": "model-00001-of-00006.safetensors",
715
+ "transformer.h.3.moe.experts.10.c_fc.weight": "model-00001-of-00006.safetensors",
716
+ "transformer.h.3.moe.experts.10.c_proj.bias": "model-00001-of-00006.safetensors",
717
+ "transformer.h.3.moe.experts.10.c_proj.weight": "model-00001-of-00006.safetensors",
718
+ "transformer.h.3.moe.experts.11.c_fc.bias": "model-00002-of-00006.safetensors",
719
+ "transformer.h.3.moe.experts.11.c_fc.weight": "model-00002-of-00006.safetensors",
720
+ "transformer.h.3.moe.experts.11.c_proj.bias": "model-00002-of-00006.safetensors",
721
+ "transformer.h.3.moe.experts.11.c_proj.weight": "model-00002-of-00006.safetensors",
722
+ "transformer.h.3.moe.experts.12.c_fc.bias": "model-00002-of-00006.safetensors",
723
+ "transformer.h.3.moe.experts.12.c_fc.weight": "model-00002-of-00006.safetensors",
724
+ "transformer.h.3.moe.experts.12.c_proj.bias": "model-00002-of-00006.safetensors",
725
+ "transformer.h.3.moe.experts.12.c_proj.weight": "model-00002-of-00006.safetensors",
726
+ "transformer.h.3.moe.experts.13.c_fc.bias": "model-00002-of-00006.safetensors",
727
+ "transformer.h.3.moe.experts.13.c_fc.weight": "model-00002-of-00006.safetensors",
728
+ "transformer.h.3.moe.experts.13.c_proj.bias": "model-00002-of-00006.safetensors",
729
+ "transformer.h.3.moe.experts.13.c_proj.weight": "model-00002-of-00006.safetensors",
730
+ "transformer.h.3.moe.experts.14.c_fc.bias": "model-00002-of-00006.safetensors",
731
+ "transformer.h.3.moe.experts.14.c_fc.weight": "model-00002-of-00006.safetensors",
732
+ "transformer.h.3.moe.experts.14.c_proj.bias": "model-00002-of-00006.safetensors",
733
+ "transformer.h.3.moe.experts.14.c_proj.weight": "model-00002-of-00006.safetensors",
734
+ "transformer.h.3.moe.experts.15.c_fc.bias": "model-00002-of-00006.safetensors",
735
+ "transformer.h.3.moe.experts.15.c_fc.weight": "model-00002-of-00006.safetensors",
736
+ "transformer.h.3.moe.experts.15.c_proj.bias": "model-00002-of-00006.safetensors",
737
+ "transformer.h.3.moe.experts.15.c_proj.weight": "model-00002-of-00006.safetensors",
738
+ "transformer.h.3.moe.experts.2.c_fc.bias": "model-00001-of-00006.safetensors",
739
+ "transformer.h.3.moe.experts.2.c_fc.weight": "model-00001-of-00006.safetensors",
740
+ "transformer.h.3.moe.experts.2.c_proj.bias": "model-00001-of-00006.safetensors",
741
+ "transformer.h.3.moe.experts.2.c_proj.weight": "model-00001-of-00006.safetensors",
742
+ "transformer.h.3.moe.experts.3.c_fc.bias": "model-00001-of-00006.safetensors",
743
+ "transformer.h.3.moe.experts.3.c_fc.weight": "model-00001-of-00006.safetensors",
744
+ "transformer.h.3.moe.experts.3.c_proj.bias": "model-00001-of-00006.safetensors",
745
+ "transformer.h.3.moe.experts.3.c_proj.weight": "model-00001-of-00006.safetensors",
746
+ "transformer.h.3.moe.experts.4.c_fc.bias": "model-00001-of-00006.safetensors",
747
+ "transformer.h.3.moe.experts.4.c_fc.weight": "model-00001-of-00006.safetensors",
748
+ "transformer.h.3.moe.experts.4.c_proj.bias": "model-00001-of-00006.safetensors",
749
+ "transformer.h.3.moe.experts.4.c_proj.weight": "model-00001-of-00006.safetensors",
750
+ "transformer.h.3.moe.experts.5.c_fc.bias": "model-00001-of-00006.safetensors",
751
+ "transformer.h.3.moe.experts.5.c_fc.weight": "model-00001-of-00006.safetensors",
752
+ "transformer.h.3.moe.experts.5.c_proj.bias": "model-00001-of-00006.safetensors",
753
+ "transformer.h.3.moe.experts.5.c_proj.weight": "model-00001-of-00006.safetensors",
754
+ "transformer.h.3.moe.experts.6.c_fc.bias": "model-00001-of-00006.safetensors",
755
+ "transformer.h.3.moe.experts.6.c_fc.weight": "model-00001-of-00006.safetensors",
756
+ "transformer.h.3.moe.experts.6.c_proj.bias": "model-00001-of-00006.safetensors",
757
+ "transformer.h.3.moe.experts.6.c_proj.weight": "model-00001-of-00006.safetensors",
758
+ "transformer.h.3.moe.experts.7.c_fc.bias": "model-00001-of-00006.safetensors",
759
+ "transformer.h.3.moe.experts.7.c_fc.weight": "model-00001-of-00006.safetensors",
760
+ "transformer.h.3.moe.experts.7.c_proj.bias": "model-00001-of-00006.safetensors",
761
+ "transformer.h.3.moe.experts.7.c_proj.weight": "model-00001-of-00006.safetensors",
762
+ "transformer.h.3.moe.experts.8.c_fc.bias": "model-00001-of-00006.safetensors",
763
+ "transformer.h.3.moe.experts.8.c_fc.weight": "model-00001-of-00006.safetensors",
764
+ "transformer.h.3.moe.experts.8.c_proj.bias": "model-00001-of-00006.safetensors",
765
+ "transformer.h.3.moe.experts.8.c_proj.weight": "model-00001-of-00006.safetensors",
766
+ "transformer.h.3.moe.experts.9.c_fc.bias": "model-00001-of-00006.safetensors",
767
+ "transformer.h.3.moe.experts.9.c_fc.weight": "model-00001-of-00006.safetensors",
768
+ "transformer.h.3.moe.experts.9.c_proj.bias": "model-00001-of-00006.safetensors",
769
+ "transformer.h.3.moe.experts.9.c_proj.weight": "model-00001-of-00006.safetensors",
770
+ "transformer.h.3.moe.gate.weight": "model-00001-of-00006.safetensors",
771
+ "transformer.h.4.attn.c_attn.bias": "model-00002-of-00006.safetensors",
772
+ "transformer.h.4.attn.c_attn.weight": "model-00002-of-00006.safetensors",
773
+ "transformer.h.4.attn.c_proj.bias": "model-00002-of-00006.safetensors",
774
+ "transformer.h.4.attn.c_proj.weight": "model-00002-of-00006.safetensors",
775
+ "transformer.h.4.ln_1.bias": "model-00002-of-00006.safetensors",
776
+ "transformer.h.4.ln_1.weight": "model-00002-of-00006.safetensors",
777
+ "transformer.h.4.ln_2.bias": "model-00002-of-00006.safetensors",
778
+ "transformer.h.4.ln_2.weight": "model-00002-of-00006.safetensors",
779
+ "transformer.h.4.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
780
+ "transformer.h.4.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
781
+ "transformer.h.4.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
782
+ "transformer.h.4.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
783
+ "transformer.h.5.attn.c_attn.bias": "model-00002-of-00006.safetensors",
784
+ "transformer.h.5.attn.c_attn.weight": "model-00002-of-00006.safetensors",
785
+ "transformer.h.5.attn.c_proj.bias": "model-00002-of-00006.safetensors",
786
+ "transformer.h.5.attn.c_proj.weight": "model-00002-of-00006.safetensors",
787
+ "transformer.h.5.ln_1.bias": "model-00002-of-00006.safetensors",
788
+ "transformer.h.5.ln_1.weight": "model-00002-of-00006.safetensors",
789
+ "transformer.h.5.ln_2.bias": "model-00002-of-00006.safetensors",
790
+ "transformer.h.5.ln_2.weight": "model-00002-of-00006.safetensors",
791
+ "transformer.h.5.moe.experts.0.c_fc.bias": "model-00002-of-00006.safetensors",
792
+ "transformer.h.5.moe.experts.0.c_fc.weight": "model-00002-of-00006.safetensors",
793
+ "transformer.h.5.moe.experts.0.c_proj.bias": "model-00002-of-00006.safetensors",
794
+ "transformer.h.5.moe.experts.0.c_proj.weight": "model-00002-of-00006.safetensors",
795
+ "transformer.h.5.moe.experts.1.c_fc.bias": "model-00002-of-00006.safetensors",
796
+ "transformer.h.5.moe.experts.1.c_fc.weight": "model-00002-of-00006.safetensors",
797
+ "transformer.h.5.moe.experts.1.c_proj.bias": "model-00002-of-00006.safetensors",
798
+ "transformer.h.5.moe.experts.1.c_proj.weight": "model-00002-of-00006.safetensors",
799
+ "transformer.h.5.moe.experts.10.c_fc.bias": "model-00002-of-00006.safetensors",
800
+ "transformer.h.5.moe.experts.10.c_fc.weight": "model-00002-of-00006.safetensors",
801
+ "transformer.h.5.moe.experts.10.c_proj.bias": "model-00002-of-00006.safetensors",
802
+ "transformer.h.5.moe.experts.10.c_proj.weight": "model-00002-of-00006.safetensors",
803
+ "transformer.h.5.moe.experts.11.c_fc.bias": "model-00002-of-00006.safetensors",
804
+ "transformer.h.5.moe.experts.11.c_fc.weight": "model-00002-of-00006.safetensors",
805
+ "transformer.h.5.moe.experts.11.c_proj.bias": "model-00002-of-00006.safetensors",
806
+ "transformer.h.5.moe.experts.11.c_proj.weight": "model-00002-of-00006.safetensors",
807
+ "transformer.h.5.moe.experts.12.c_fc.bias": "model-00002-of-00006.safetensors",
808
+ "transformer.h.5.moe.experts.12.c_fc.weight": "model-00002-of-00006.safetensors",
809
+ "transformer.h.5.moe.experts.12.c_proj.bias": "model-00002-of-00006.safetensors",
810
+ "transformer.h.5.moe.experts.12.c_proj.weight": "model-00002-of-00006.safetensors",
811
+ "transformer.h.5.moe.experts.13.c_fc.bias": "model-00002-of-00006.safetensors",
812
+ "transformer.h.5.moe.experts.13.c_fc.weight": "model-00002-of-00006.safetensors",
813
+ "transformer.h.5.moe.experts.13.c_proj.bias": "model-00002-of-00006.safetensors",
814
+ "transformer.h.5.moe.experts.13.c_proj.weight": "model-00002-of-00006.safetensors",
815
+ "transformer.h.5.moe.experts.14.c_fc.bias": "model-00002-of-00006.safetensors",
816
+ "transformer.h.5.moe.experts.14.c_fc.weight": "model-00002-of-00006.safetensors",
817
+ "transformer.h.5.moe.experts.14.c_proj.bias": "model-00002-of-00006.safetensors",
818
+ "transformer.h.5.moe.experts.14.c_proj.weight": "model-00002-of-00006.safetensors",
819
+ "transformer.h.5.moe.experts.15.c_fc.bias": "model-00002-of-00006.safetensors",
820
+ "transformer.h.5.moe.experts.15.c_fc.weight": "model-00002-of-00006.safetensors",
821
+ "transformer.h.5.moe.experts.15.c_proj.bias": "model-00002-of-00006.safetensors",
822
+ "transformer.h.5.moe.experts.15.c_proj.weight": "model-00002-of-00006.safetensors",
823
+ "transformer.h.5.moe.experts.2.c_fc.bias": "model-00002-of-00006.safetensors",
824
+ "transformer.h.5.moe.experts.2.c_fc.weight": "model-00002-of-00006.safetensors",
825
+ "transformer.h.5.moe.experts.2.c_proj.bias": "model-00002-of-00006.safetensors",
826
+ "transformer.h.5.moe.experts.2.c_proj.weight": "model-00002-of-00006.safetensors",
827
+ "transformer.h.5.moe.experts.3.c_fc.bias": "model-00002-of-00006.safetensors",
828
+ "transformer.h.5.moe.experts.3.c_fc.weight": "model-00002-of-00006.safetensors",
829
+ "transformer.h.5.moe.experts.3.c_proj.bias": "model-00002-of-00006.safetensors",
830
+ "transformer.h.5.moe.experts.3.c_proj.weight": "model-00002-of-00006.safetensors",
831
+ "transformer.h.5.moe.experts.4.c_fc.bias": "model-00002-of-00006.safetensors",
832
+ "transformer.h.5.moe.experts.4.c_fc.weight": "model-00002-of-00006.safetensors",
833
+ "transformer.h.5.moe.experts.4.c_proj.bias": "model-00002-of-00006.safetensors",
834
+ "transformer.h.5.moe.experts.4.c_proj.weight": "model-00002-of-00006.safetensors",
835
+ "transformer.h.5.moe.experts.5.c_fc.bias": "model-00002-of-00006.safetensors",
836
+ "transformer.h.5.moe.experts.5.c_fc.weight": "model-00002-of-00006.safetensors",
837
+ "transformer.h.5.moe.experts.5.c_proj.bias": "model-00002-of-00006.safetensors",
838
+ "transformer.h.5.moe.experts.5.c_proj.weight": "model-00002-of-00006.safetensors",
839
+ "transformer.h.5.moe.experts.6.c_fc.bias": "model-00002-of-00006.safetensors",
840
+ "transformer.h.5.moe.experts.6.c_fc.weight": "model-00002-of-00006.safetensors",
841
+ "transformer.h.5.moe.experts.6.c_proj.bias": "model-00002-of-00006.safetensors",
842
+ "transformer.h.5.moe.experts.6.c_proj.weight": "model-00002-of-00006.safetensors",
843
+ "transformer.h.5.moe.experts.7.c_fc.bias": "model-00002-of-00006.safetensors",
844
+ "transformer.h.5.moe.experts.7.c_fc.weight": "model-00002-of-00006.safetensors",
845
+ "transformer.h.5.moe.experts.7.c_proj.bias": "model-00002-of-00006.safetensors",
846
+ "transformer.h.5.moe.experts.7.c_proj.weight": "model-00002-of-00006.safetensors",
847
+ "transformer.h.5.moe.experts.8.c_fc.bias": "model-00002-of-00006.safetensors",
848
+ "transformer.h.5.moe.experts.8.c_fc.weight": "model-00002-of-00006.safetensors",
849
+ "transformer.h.5.moe.experts.8.c_proj.bias": "model-00002-of-00006.safetensors",
850
+ "transformer.h.5.moe.experts.8.c_proj.weight": "model-00002-of-00006.safetensors",
851
+ "transformer.h.5.moe.experts.9.c_fc.bias": "model-00002-of-00006.safetensors",
852
+ "transformer.h.5.moe.experts.9.c_fc.weight": "model-00002-of-00006.safetensors",
853
+ "transformer.h.5.moe.experts.9.c_proj.bias": "model-00002-of-00006.safetensors",
854
+ "transformer.h.5.moe.experts.9.c_proj.weight": "model-00002-of-00006.safetensors",
855
+ "transformer.h.5.moe.gate.weight": "model-00002-of-00006.safetensors",
856
+ "transformer.h.6.attn.c_attn.bias": "model-00002-of-00006.safetensors",
857
+ "transformer.h.6.attn.c_attn.weight": "model-00002-of-00006.safetensors",
858
+ "transformer.h.6.attn.c_proj.bias": "model-00002-of-00006.safetensors",
859
+ "transformer.h.6.attn.c_proj.weight": "model-00002-of-00006.safetensors",
860
+ "transformer.h.6.ln_1.bias": "model-00002-of-00006.safetensors",
861
+ "transformer.h.6.ln_1.weight": "model-00002-of-00006.safetensors",
862
+ "transformer.h.6.ln_2.bias": "model-00002-of-00006.safetensors",
863
+ "transformer.h.6.ln_2.weight": "model-00002-of-00006.safetensors",
864
+ "transformer.h.6.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
865
+ "transformer.h.6.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
866
+ "transformer.h.6.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
867
+ "transformer.h.6.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
868
+ "transformer.h.7.attn.c_attn.bias": "model-00002-of-00006.safetensors",
869
+ "transformer.h.7.attn.c_attn.weight": "model-00002-of-00006.safetensors",
870
+ "transformer.h.7.attn.c_proj.bias": "model-00002-of-00006.safetensors",
871
+ "transformer.h.7.attn.c_proj.weight": "model-00002-of-00006.safetensors",
872
+ "transformer.h.7.ln_1.bias": "model-00002-of-00006.safetensors",
873
+ "transformer.h.7.ln_1.weight": "model-00002-of-00006.safetensors",
874
+ "transformer.h.7.ln_2.bias": "model-00002-of-00006.safetensors",
875
+ "transformer.h.7.ln_2.weight": "model-00002-of-00006.safetensors",
876
+ "transformer.h.7.moe.experts.0.c_fc.bias": "model-00002-of-00006.safetensors",
877
+ "transformer.h.7.moe.experts.0.c_fc.weight": "model-00002-of-00006.safetensors",
878
+ "transformer.h.7.moe.experts.0.c_proj.bias": "model-00002-of-00006.safetensors",
879
+ "transformer.h.7.moe.experts.0.c_proj.weight": "model-00002-of-00006.safetensors",
880
+ "transformer.h.7.moe.experts.1.c_fc.bias": "model-00002-of-00006.safetensors",
881
+ "transformer.h.7.moe.experts.1.c_fc.weight": "model-00002-of-00006.safetensors",
882
+ "transformer.h.7.moe.experts.1.c_proj.bias": "model-00002-of-00006.safetensors",
883
+ "transformer.h.7.moe.experts.1.c_proj.weight": "model-00002-of-00006.safetensors",
884
+ "transformer.h.7.moe.experts.10.c_fc.bias": "model-00002-of-00006.safetensors",
885
+ "transformer.h.7.moe.experts.10.c_fc.weight": "model-00002-of-00006.safetensors",
886
+ "transformer.h.7.moe.experts.10.c_proj.bias": "model-00002-of-00006.safetensors",
887
+ "transformer.h.7.moe.experts.10.c_proj.weight": "model-00002-of-00006.safetensors",
888
+ "transformer.h.7.moe.experts.11.c_fc.bias": "model-00002-of-00006.safetensors",
889
+ "transformer.h.7.moe.experts.11.c_fc.weight": "model-00002-of-00006.safetensors",
890
+ "transformer.h.7.moe.experts.11.c_proj.bias": "model-00002-of-00006.safetensors",
891
+ "transformer.h.7.moe.experts.11.c_proj.weight": "model-00002-of-00006.safetensors",
892
+ "transformer.h.7.moe.experts.12.c_fc.bias": "model-00003-of-00006.safetensors",
893
+ "transformer.h.7.moe.experts.12.c_fc.weight": "model-00003-of-00006.safetensors",
894
+ "transformer.h.7.moe.experts.12.c_proj.bias": "model-00003-of-00006.safetensors",
895
+ "transformer.h.7.moe.experts.12.c_proj.weight": "model-00003-of-00006.safetensors",
896
+ "transformer.h.7.moe.experts.13.c_fc.bias": "model-00003-of-00006.safetensors",
897
+ "transformer.h.7.moe.experts.13.c_fc.weight": "model-00003-of-00006.safetensors",
898
+ "transformer.h.7.moe.experts.13.c_proj.bias": "model-00003-of-00006.safetensors",
899
+ "transformer.h.7.moe.experts.13.c_proj.weight": "model-00003-of-00006.safetensors",
900
+ "transformer.h.7.moe.experts.14.c_fc.bias": "model-00003-of-00006.safetensors",
901
+ "transformer.h.7.moe.experts.14.c_fc.weight": "model-00003-of-00006.safetensors",
902
+ "transformer.h.7.moe.experts.14.c_proj.bias": "model-00003-of-00006.safetensors",
903
+ "transformer.h.7.moe.experts.14.c_proj.weight": "model-00003-of-00006.safetensors",
904
+ "transformer.h.7.moe.experts.15.c_fc.bias": "model-00003-of-00006.safetensors",
905
+ "transformer.h.7.moe.experts.15.c_fc.weight": "model-00003-of-00006.safetensors",
906
+ "transformer.h.7.moe.experts.15.c_proj.bias": "model-00003-of-00006.safetensors",
907
+ "transformer.h.7.moe.experts.15.c_proj.weight": "model-00003-of-00006.safetensors",
908
+ "transformer.h.7.moe.experts.2.c_fc.bias": "model-00002-of-00006.safetensors",
909
+ "transformer.h.7.moe.experts.2.c_fc.weight": "model-00002-of-00006.safetensors",
910
+ "transformer.h.7.moe.experts.2.c_proj.bias": "model-00002-of-00006.safetensors",
911
+ "transformer.h.7.moe.experts.2.c_proj.weight": "model-00002-of-00006.safetensors",
912
+ "transformer.h.7.moe.experts.3.c_fc.bias": "model-00002-of-00006.safetensors",
913
+ "transformer.h.7.moe.experts.3.c_fc.weight": "model-00002-of-00006.safetensors",
914
+ "transformer.h.7.moe.experts.3.c_proj.bias": "model-00002-of-00006.safetensors",
915
+ "transformer.h.7.moe.experts.3.c_proj.weight": "model-00002-of-00006.safetensors",
916
+ "transformer.h.7.moe.experts.4.c_fc.bias": "model-00002-of-00006.safetensors",
917
+ "transformer.h.7.moe.experts.4.c_fc.weight": "model-00002-of-00006.safetensors",
918
+ "transformer.h.7.moe.experts.4.c_proj.bias": "model-00002-of-00006.safetensors",
919
+ "transformer.h.7.moe.experts.4.c_proj.weight": "model-00002-of-00006.safetensors",
920
+ "transformer.h.7.moe.experts.5.c_fc.bias": "model-00002-of-00006.safetensors",
921
+ "transformer.h.7.moe.experts.5.c_fc.weight": "model-00002-of-00006.safetensors",
922
+ "transformer.h.7.moe.experts.5.c_proj.bias": "model-00002-of-00006.safetensors",
923
+ "transformer.h.7.moe.experts.5.c_proj.weight": "model-00002-of-00006.safetensors",
924
+ "transformer.h.7.moe.experts.6.c_fc.bias": "model-00002-of-00006.safetensors",
925
+ "transformer.h.7.moe.experts.6.c_fc.weight": "model-00002-of-00006.safetensors",
926
+ "transformer.h.7.moe.experts.6.c_proj.bias": "model-00002-of-00006.safetensors",
927
+ "transformer.h.7.moe.experts.6.c_proj.weight": "model-00002-of-00006.safetensors",
928
+ "transformer.h.7.moe.experts.7.c_fc.bias": "model-00002-of-00006.safetensors",
929
+ "transformer.h.7.moe.experts.7.c_fc.weight": "model-00002-of-00006.safetensors",
930
+ "transformer.h.7.moe.experts.7.c_proj.bias": "model-00002-of-00006.safetensors",
931
+ "transformer.h.7.moe.experts.7.c_proj.weight": "model-00002-of-00006.safetensors",
932
+ "transformer.h.7.moe.experts.8.c_fc.bias": "model-00002-of-00006.safetensors",
933
+ "transformer.h.7.moe.experts.8.c_fc.weight": "model-00002-of-00006.safetensors",
934
+ "transformer.h.7.moe.experts.8.c_proj.bias": "model-00002-of-00006.safetensors",
935
+ "transformer.h.7.moe.experts.8.c_proj.weight": "model-00002-of-00006.safetensors",
936
+ "transformer.h.7.moe.experts.9.c_fc.bias": "model-00002-of-00006.safetensors",
937
+ "transformer.h.7.moe.experts.9.c_fc.weight": "model-00002-of-00006.safetensors",
938
+ "transformer.h.7.moe.experts.9.c_proj.bias": "model-00002-of-00006.safetensors",
939
+ "transformer.h.7.moe.experts.9.c_proj.weight": "model-00002-of-00006.safetensors",
940
+ "transformer.h.7.moe.gate.weight": "model-00002-of-00006.safetensors",
941
+ "transformer.h.8.attn.c_attn.bias": "model-00003-of-00006.safetensors",
942
+ "transformer.h.8.attn.c_attn.weight": "model-00003-of-00006.safetensors",
943
+ "transformer.h.8.attn.c_proj.bias": "model-00003-of-00006.safetensors",
944
+ "transformer.h.8.attn.c_proj.weight": "model-00003-of-00006.safetensors",
945
+ "transformer.h.8.ln_1.bias": "model-00003-of-00006.safetensors",
946
+ "transformer.h.8.ln_1.weight": "model-00003-of-00006.safetensors",
947
+ "transformer.h.8.ln_2.bias": "model-00003-of-00006.safetensors",
948
+ "transformer.h.8.ln_2.weight": "model-00003-of-00006.safetensors",
949
+ "transformer.h.8.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
950
+ "transformer.h.8.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
951
+ "transformer.h.8.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
952
+ "transformer.h.8.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
953
+ "transformer.h.9.attn.c_attn.bias": "model-00003-of-00006.safetensors",
954
+ "transformer.h.9.attn.c_attn.weight": "model-00003-of-00006.safetensors",
955
+ "transformer.h.9.attn.c_proj.bias": "model-00003-of-00006.safetensors",
956
+ "transformer.h.9.attn.c_proj.weight": "model-00003-of-00006.safetensors",
957
+ "transformer.h.9.ln_1.bias": "model-00003-of-00006.safetensors",
958
+ "transformer.h.9.ln_1.weight": "model-00003-of-00006.safetensors",
959
+ "transformer.h.9.ln_2.bias": "model-00003-of-00006.safetensors",
960
+ "transformer.h.9.ln_2.weight": "model-00003-of-00006.safetensors",
961
+ "transformer.h.9.moe.experts.0.c_fc.bias": "model-00003-of-00006.safetensors",
962
+ "transformer.h.9.moe.experts.0.c_fc.weight": "model-00003-of-00006.safetensors",
963
+ "transformer.h.9.moe.experts.0.c_proj.bias": "model-00003-of-00006.safetensors",
964
+ "transformer.h.9.moe.experts.0.c_proj.weight": "model-00003-of-00006.safetensors",
965
+ "transformer.h.9.moe.experts.1.c_fc.bias": "model-00003-of-00006.safetensors",
966
+ "transformer.h.9.moe.experts.1.c_fc.weight": "model-00003-of-00006.safetensors",
967
+ "transformer.h.9.moe.experts.1.c_proj.bias": "model-00003-of-00006.safetensors",
968
+ "transformer.h.9.moe.experts.1.c_proj.weight": "model-00003-of-00006.safetensors",
969
+ "transformer.h.9.moe.experts.10.c_fc.bias": "model-00003-of-00006.safetensors",
970
+ "transformer.h.9.moe.experts.10.c_fc.weight": "model-00003-of-00006.safetensors",
971
+ "transformer.h.9.moe.experts.10.c_proj.bias": "model-00003-of-00006.safetensors",
972
+ "transformer.h.9.moe.experts.10.c_proj.weight": "model-00003-of-00006.safetensors",
973
+ "transformer.h.9.moe.experts.11.c_fc.bias": "model-00003-of-00006.safetensors",
974
+ "transformer.h.9.moe.experts.11.c_fc.weight": "model-00003-of-00006.safetensors",
975
+ "transformer.h.9.moe.experts.11.c_proj.bias": "model-00003-of-00006.safetensors",
976
+ "transformer.h.9.moe.experts.11.c_proj.weight": "model-00003-of-00006.safetensors",
977
+ "transformer.h.9.moe.experts.12.c_fc.bias": "model-00003-of-00006.safetensors",
978
+ "transformer.h.9.moe.experts.12.c_fc.weight": "model-00003-of-00006.safetensors",
979
+ "transformer.h.9.moe.experts.12.c_proj.bias": "model-00003-of-00006.safetensors",
980
+ "transformer.h.9.moe.experts.12.c_proj.weight": "model-00003-of-00006.safetensors",
981
+ "transformer.h.9.moe.experts.13.c_fc.bias": "model-00003-of-00006.safetensors",
982
+ "transformer.h.9.moe.experts.13.c_fc.weight": "model-00003-of-00006.safetensors",
983
+ "transformer.h.9.moe.experts.13.c_proj.bias": "model-00003-of-00006.safetensors",
984
+ "transformer.h.9.moe.experts.13.c_proj.weight": "model-00003-of-00006.safetensors",
985
+ "transformer.h.9.moe.experts.14.c_fc.bias": "model-00003-of-00006.safetensors",
986
+ "transformer.h.9.moe.experts.14.c_fc.weight": "model-00003-of-00006.safetensors",
987
+ "transformer.h.9.moe.experts.14.c_proj.bias": "model-00003-of-00006.safetensors",
988
+ "transformer.h.9.moe.experts.14.c_proj.weight": "model-00003-of-00006.safetensors",
989
+ "transformer.h.9.moe.experts.15.c_fc.bias": "model-00003-of-00006.safetensors",
990
+ "transformer.h.9.moe.experts.15.c_fc.weight": "model-00003-of-00006.safetensors",
991
+ "transformer.h.9.moe.experts.15.c_proj.bias": "model-00003-of-00006.safetensors",
992
+ "transformer.h.9.moe.experts.15.c_proj.weight": "model-00003-of-00006.safetensors",
993
+ "transformer.h.9.moe.experts.2.c_fc.bias": "model-00003-of-00006.safetensors",
994
+ "transformer.h.9.moe.experts.2.c_fc.weight": "model-00003-of-00006.safetensors",
995
+ "transformer.h.9.moe.experts.2.c_proj.bias": "model-00003-of-00006.safetensors",
996
+ "transformer.h.9.moe.experts.2.c_proj.weight": "model-00003-of-00006.safetensors",
997
+ "transformer.h.9.moe.experts.3.c_fc.bias": "model-00003-of-00006.safetensors",
998
+ "transformer.h.9.moe.experts.3.c_fc.weight": "model-00003-of-00006.safetensors",
999
+ "transformer.h.9.moe.experts.3.c_proj.bias": "model-00003-of-00006.safetensors",
1000
+ "transformer.h.9.moe.experts.3.c_proj.weight": "model-00003-of-00006.safetensors",
1001
+ "transformer.h.9.moe.experts.4.c_fc.bias": "model-00003-of-00006.safetensors",
1002
+ "transformer.h.9.moe.experts.4.c_fc.weight": "model-00003-of-00006.safetensors",
1003
+ "transformer.h.9.moe.experts.4.c_proj.bias": "model-00003-of-00006.safetensors",
1004
+ "transformer.h.9.moe.experts.4.c_proj.weight": "model-00003-of-00006.safetensors",
1005
+ "transformer.h.9.moe.experts.5.c_fc.bias": "model-00003-of-00006.safetensors",
1006
+ "transformer.h.9.moe.experts.5.c_fc.weight": "model-00003-of-00006.safetensors",
1007
+ "transformer.h.9.moe.experts.5.c_proj.bias": "model-00003-of-00006.safetensors",
1008
+ "transformer.h.9.moe.experts.5.c_proj.weight": "model-00003-of-00006.safetensors",
1009
+ "transformer.h.9.moe.experts.6.c_fc.bias": "model-00003-of-00006.safetensors",
1010
+ "transformer.h.9.moe.experts.6.c_fc.weight": "model-00003-of-00006.safetensors",
1011
+ "transformer.h.9.moe.experts.6.c_proj.bias": "model-00003-of-00006.safetensors",
1012
+ "transformer.h.9.moe.experts.6.c_proj.weight": "model-00003-of-00006.safetensors",
1013
+ "transformer.h.9.moe.experts.7.c_fc.bias": "model-00003-of-00006.safetensors",
1014
+ "transformer.h.9.moe.experts.7.c_fc.weight": "model-00003-of-00006.safetensors",
1015
+ "transformer.h.9.moe.experts.7.c_proj.bias": "model-00003-of-00006.safetensors",
1016
+ "transformer.h.9.moe.experts.7.c_proj.weight": "model-00003-of-00006.safetensors",
1017
+ "transformer.h.9.moe.experts.8.c_fc.bias": "model-00003-of-00006.safetensors",
1018
+ "transformer.h.9.moe.experts.8.c_fc.weight": "model-00003-of-00006.safetensors",
1019
+ "transformer.h.9.moe.experts.8.c_proj.bias": "model-00003-of-00006.safetensors",
1020
+ "transformer.h.9.moe.experts.8.c_proj.weight": "model-00003-of-00006.safetensors",
1021
+ "transformer.h.9.moe.experts.9.c_fc.bias": "model-00003-of-00006.safetensors",
1022
+ "transformer.h.9.moe.experts.9.c_fc.weight": "model-00003-of-00006.safetensors",
1023
+ "transformer.h.9.moe.experts.9.c_proj.bias": "model-00003-of-00006.safetensors",
1024
+ "transformer.h.9.moe.experts.9.c_proj.weight": "model-00003-of-00006.safetensors",
1025
+ "transformer.h.9.moe.gate.weight": "model-00003-of-00006.safetensors",
1026
+ "transformer.ln_f.bias": "model-00006-of-00006.safetensors",
1027
+ "transformer.ln_f.weight": "model-00006-of-00006.safetensors",
1028
+ "transformer.wpe.weight": "model-00001-of-00006.safetensors",
1029
+ "transformer.wte.weight": "model-00001-of-00006.safetensors"
1030
+ }
1031
+ }
modeling_lola_gpt2.py ADDED
@@ -0,0 +1,667 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This script provides an implementation of GPT2 based mixture-of-experts model.
2
+ # Most of its functionality is copied from existing GPT2 implementation on huggingface: https://huggingface.co/docs/transformers/v4.20.1/en/model_doc/gpt2
3
+ # MoE layers are inspired by Mixtral: https://huggingface.co/docs/transformers/v4.39.1/en/model_doc/mixtral
4
+ # There are however, slight differences in this implementation to adapt it to behave like DeepSpeed Megatron's GPT2 MoE: https://github.com/microsoft/Megatron-DeepSpeed/blob/main/examples_deepspeed/MoE/ds_pretrain_gpt_1.3B_MoE128.sh
5
+ # Please note: Most of the the features from DeepSpeed Megatron's GPT MoE are **not** implemented here.
6
+
7
+ import warnings
8
+ from typing import Optional, Tuple, Union
9
+
10
+ from .configuration_lola_gpt2 import LOLAConfig
11
+ import torch
12
+ import torch.utils.checkpoint
13
+ from torch import nn
14
+ import torch.nn.functional as F
15
+ from torch.nn import CrossEntropyLoss
16
+
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPastAndCrossAttentions,
19
+ SequenceClassifierOutputWithPast,
20
+ QuestionAnsweringModelOutput
21
+ )
22
+ from transformers.modeling_utils import SequenceSummary
23
+ from transformers.pytorch_utils import Conv1D
24
+ from transformers.utils import (
25
+ logging
26
+ )
27
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
28
+
29
+ from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2MLP, GPT2Block, GPT2PreTrainedModel
30
+ from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel, GPT2DoubleHeadsModel, GPT2ForSequenceClassification, GPT2ForTokenClassification
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+ # LOLA
36
+ class LOLAModel(GPT2PreTrainedModel):
37
+
38
+ config_class = LOLAConfig
39
+
40
+ def __init__(self, config):
41
+ super().__init__(config)
42
+
43
+ self.embed_dim = config.hidden_size
44
+
45
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
46
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
47
+
48
+ self.drop = nn.Dropout(config.embd_pdrop)
49
+ self.h = nn.ModuleList([
50
+ GPT2Block(config, layer_idx=i) if i % 2 == 0 else LOLABlock(config, layer_idx=i) for i in range(config.num_hidden_layers)
51
+ ])
52
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
53
+
54
+ # Model parallel
55
+ self.model_parallel = False
56
+ self.device_map = None
57
+ self.gradient_checkpointing = False
58
+
59
+ # Initialize weights and apply final processing
60
+ self.post_init()
61
+
62
+
63
+ def parallelize(self, device_map=None):
64
+ # Check validity of device_map
65
+ warnings.warn(
66
+ "`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
67
+ " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
68
+ " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
69
+ " ...}",
70
+ FutureWarning,
71
+ )
72
+ self.device_map = (
73
+ get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
74
+ )
75
+ assert_device_map(self.device_map, len(self.h))
76
+ self.model_parallel = True
77
+ self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
78
+ self.last_device = "cuda:" + str(max(self.device_map.keys()))
79
+ self.wte = self.wte.to(self.first_device)
80
+ self.wpe = self.wpe.to(self.first_device)
81
+ # Load onto devices
82
+ for k, v in self.device_map.items():
83
+ for block in v:
84
+ cuda_device = "cuda:" + str(k)
85
+ self.h[block] = self.h[block].to(cuda_device)
86
+ # ln_f to last
87
+ self.ln_f = self.ln_f.to(self.last_device)
88
+
89
+
90
+ def deparallelize(self):
91
+ warnings.warn(
92
+ "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
93
+ FutureWarning,
94
+ )
95
+ self.model_parallel = False
96
+ self.device_map = None
97
+ self.first_device = "cpu"
98
+ self.last_device = "cpu"
99
+ self.wte = self.wte.to("cpu")
100
+ self.wpe = self.wpe.to("cpu")
101
+ for index in range(len(self.h)):
102
+ self.h[index] = self.h[index].to("cpu")
103
+ self.ln_f = self.ln_f.to("cpu")
104
+ torch.cuda.empty_cache()
105
+
106
+ def get_input_embeddings(self):
107
+ return self.wte
108
+
109
+ def set_input_embeddings(self, new_embeddings):
110
+ self.wte = new_embeddings
111
+
112
+ def _prune_heads(self, heads_to_prune):
113
+ """
114
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
115
+ """
116
+ for layer, heads in heads_to_prune.items():
117
+ self.h[layer].attn.prune_heads(heads)
118
+
119
+ def forward(
120
+ self,
121
+ input_ids: Optional[torch.LongTensor] = None,
122
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
123
+ attention_mask: Optional[torch.FloatTensor] = None,
124
+ token_type_ids: Optional[torch.LongTensor] = None,
125
+ position_ids: Optional[torch.LongTensor] = None,
126
+ head_mask: Optional[torch.FloatTensor] = None,
127
+ inputs_embeds: Optional[torch.FloatTensor] = None,
128
+ encoder_hidden_states: Optional[torch.Tensor] = None,
129
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
130
+ use_cache: Optional[bool] = None,
131
+ output_attentions: Optional[bool] = None,
132
+ output_hidden_states: Optional[bool] = None,
133
+ return_dict: Optional[bool] = None,
134
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
135
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
136
+ output_hidden_states = (
137
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
138
+ )
139
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
140
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
141
+
142
+ if input_ids is not None and inputs_embeds is not None:
143
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
144
+ elif input_ids is not None:
145
+ # self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
146
+ input_shape = input_ids.size()
147
+ input_ids = input_ids.view(-1, input_shape[-1])
148
+ batch_size = input_ids.shape[0]
149
+ elif inputs_embeds is not None:
150
+ input_shape = inputs_embeds.size()[:-1]
151
+ batch_size = inputs_embeds.shape[0]
152
+ else:
153
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
154
+
155
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
156
+
157
+ if token_type_ids is not None:
158
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
159
+
160
+ if past_key_values is None:
161
+ past_length = 0
162
+ past_key_values = tuple([None] * len(self.h))
163
+ else:
164
+ past_length = past_key_values[0][0].size(-2)
165
+ if position_ids is None:
166
+ position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
167
+ position_ids = position_ids.unsqueeze(0)
168
+
169
+ # GPT2Attention mask.
170
+ if attention_mask is not None:
171
+ if batch_size <= 0:
172
+ raise ValueError("batch_size has to be defined and > 0")
173
+ attention_mask = attention_mask.view(batch_size, -1)
174
+ # We create a 3D attention mask from a 2D tensor mask.
175
+ # Sizes are [batch_size, 1, 1, to_seq_length]
176
+ # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
177
+ # this attention mask is more simple than the triangular masking of causal attention
178
+ # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
179
+ attention_mask = attention_mask[:, None, None, :]
180
+
181
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
182
+ # masked positions, this operation will create a tensor which is 0.0 for
183
+ # positions we want to attend and the dtype's smallest value for masked positions.
184
+ # Since we are adding it to the raw scores before the softmax, this is
185
+ # effectively the same as removing these entirely.
186
+ attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
187
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
188
+
189
+ # If a 2D or 3D attention mask is provided for the cross-attention
190
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
191
+ if self.config.add_cross_attention and encoder_hidden_states is not None:
192
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
193
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
194
+ if encoder_attention_mask is None:
195
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
196
+ encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
197
+ else:
198
+ encoder_attention_mask = None
199
+
200
+ # Prepare head mask if needed
201
+ # 1.0 in head_mask indicate we keep the head
202
+ # attention_probs has shape bsz x n_heads x N x N
203
+ # head_mask has shape n_layer x batch x n_heads x N x N
204
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
205
+
206
+ if inputs_embeds is None:
207
+ inputs_embeds = self.wte(input_ids)
208
+ position_embeds = self.wpe(position_ids)
209
+ hidden_states = inputs_embeds + position_embeds
210
+
211
+ if token_type_ids is not None:
212
+ token_type_embeds = self.wte(token_type_ids)
213
+ hidden_states = hidden_states + token_type_embeds
214
+
215
+ hidden_states = self.drop(hidden_states)
216
+
217
+ output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
218
+
219
+ if self.gradient_checkpointing and self.training:
220
+ if use_cache:
221
+ logger.warning_once(
222
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
223
+ )
224
+ use_cache = False
225
+
226
+ presents = () if use_cache else None
227
+ all_self_attentions = () if output_attentions else None
228
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
229
+ all_hidden_states = () if output_hidden_states else None
230
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
231
+ # Model parallel
232
+ if self.model_parallel:
233
+ torch.cuda.set_device(hidden_states.device)
234
+ # Ensure layer_past is on same device as hidden_states (might not be correct)
235
+ if layer_past is not None:
236
+ layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
237
+ # Ensure that attention_mask is always on the same device as hidden_states
238
+ if attention_mask is not None:
239
+ attention_mask = attention_mask.to(hidden_states.device)
240
+ if isinstance(head_mask, torch.Tensor):
241
+ head_mask = head_mask.to(hidden_states.device)
242
+ if output_hidden_states:
243
+ all_hidden_states = all_hidden_states + (hidden_states,)
244
+
245
+ if self.gradient_checkpointing and self.training:
246
+ outputs = self._gradient_checkpointing_func(
247
+ block.__call__,
248
+ hidden_states,
249
+ None,
250
+ attention_mask,
251
+ head_mask[i],
252
+ encoder_hidden_states,
253
+ encoder_attention_mask,
254
+ use_cache,
255
+ output_attentions,
256
+ )
257
+ else:
258
+ outputs = block(
259
+ hidden_states,
260
+ layer_past=layer_past,
261
+ attention_mask=attention_mask,
262
+ head_mask=head_mask[i],
263
+ encoder_hidden_states=encoder_hidden_states,
264
+ encoder_attention_mask=encoder_attention_mask,
265
+ use_cache=use_cache,
266
+ output_attentions=output_attentions,
267
+ )
268
+
269
+ hidden_states = outputs[0]
270
+ if use_cache is True:
271
+ presents = presents + (outputs[1],)
272
+
273
+ if output_attentions:
274
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
275
+ if self.config.add_cross_attention:
276
+ all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
277
+
278
+ # Model Parallel: If it's the last layer for that device, put things on the next device
279
+ if self.model_parallel:
280
+ for k, v in self.device_map.items():
281
+ if i == v[-1] and "cuda:" + str(k) != self.last_device:
282
+ hidden_states = hidden_states.to("cuda:" + str(k + 1))
283
+
284
+ hidden_states = self.ln_f(hidden_states)
285
+
286
+ hidden_states = hidden_states.view(output_shape)
287
+ # Add last hidden state
288
+ if output_hidden_states:
289
+ all_hidden_states = all_hidden_states + (hidden_states,)
290
+
291
+ if not return_dict:
292
+ return tuple(
293
+ v
294
+ for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
295
+ if v is not None
296
+ )
297
+
298
+ return BaseModelOutputWithPastAndCrossAttentions(
299
+ last_hidden_state=hidden_states,
300
+ past_key_values=presents,
301
+ hidden_states=all_hidden_states,
302
+ attentions=all_self_attentions,
303
+ cross_attentions=all_cross_attentions,
304
+ )
305
+
306
+ class LOLABlock(nn.Module):
307
+ def __init__(self, config, layer_idx=None):
308
+ super().__init__()
309
+ hidden_size = config.hidden_size
310
+ inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
311
+
312
+ self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
313
+ self.attn = GPT2Attention(config, layer_idx=layer_idx)
314
+ self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
315
+
316
+ self.moe = LOLAMOE(
317
+ hidden_size,
318
+ inner_dim,
319
+ config,
320
+ config.num_experts,
321
+ k=config.topk,
322
+ # capacity_factor=1.0,
323
+ # min_capacity=4,
324
+ # drop_tokens=False,
325
+ # use_tutel=False,
326
+ # enable_expert_tensor_parallelism=False,
327
+ )
328
+
329
+ def forward(
330
+ self,
331
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
332
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
333
+ attention_mask: Optional[torch.FloatTensor] = None,
334
+ head_mask: Optional[torch.FloatTensor] = None,
335
+ encoder_hidden_states: Optional[torch.Tensor] = None,
336
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
337
+ use_cache: Optional[bool] = False,
338
+ output_attentions: Optional[bool] = False,
339
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
340
+ residual = hidden_states
341
+ hidden_states = self.ln_1(hidden_states)
342
+ attn_outputs = self.attn(
343
+ hidden_states,
344
+ layer_past=layer_past,
345
+ attention_mask=attention_mask,
346
+ head_mask=head_mask,
347
+ use_cache=use_cache,
348
+ output_attentions=output_attentions,
349
+ )
350
+ attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
351
+ outputs = attn_outputs[1:]
352
+ # residual connection
353
+ hidden_states = attn_output + residual
354
+
355
+ if encoder_hidden_states is not None:
356
+ # add one self-attention block for cross-attention
357
+ if not hasattr(self, "crossattention"):
358
+ raise ValueError(
359
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
360
+ "cross-attention layers by setting `config.add_cross_attention=True`"
361
+ )
362
+ residual = hidden_states
363
+ hidden_states = self.ln_cross_attn(hidden_states)
364
+ cross_attn_outputs = self.crossattention(
365
+ hidden_states,
366
+ attention_mask=attention_mask,
367
+ head_mask=head_mask,
368
+ encoder_hidden_states=encoder_hidden_states,
369
+ encoder_attention_mask=encoder_attention_mask,
370
+ output_attentions=output_attentions,
371
+ )
372
+ attn_output = cross_attn_outputs[0]
373
+ # residual connection
374
+ hidden_states = residual + attn_output
375
+ outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
376
+
377
+ residual = hidden_states
378
+ hidden_states = self.ln_2(hidden_states)
379
+ feed_forward_hidden_states, _ = self.moe(hidden_states)
380
+ # residual connection
381
+ hidden_states = residual + feed_forward_hidden_states
382
+
383
+ if use_cache:
384
+ outputs = (hidden_states,) + outputs
385
+ else:
386
+ outputs = (hidden_states,) + outputs[1:]
387
+
388
+ return outputs # hidden_states, present, (attentions, cross_attentions)
389
+
390
+ class LOLAMOE(nn.Module):
391
+ def __init__(self,
392
+ hidden_size,
393
+ inner_dim,
394
+ config,
395
+ num_experts,
396
+ k
397
+ ):
398
+ super().__init__()
399
+ self.hidden_dim = hidden_size
400
+ self.num_experts = num_experts
401
+ self.top_k = k
402
+
403
+ self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
404
+ self.experts = nn.ModuleList([GPT2MLP(inner_dim, config) for _ in range(self.num_experts)])
405
+
406
+ def forward(self, hidden_states):
407
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py#L816
408
+ # FIXME do it as in top1gating
409
+ # https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/sharded_moe.py
410
+
411
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
412
+ hidden_states = hidden_states.view(-1, hidden_dim)
413
+
414
+ router_logits = self.gate(hidden_states)
415
+ # router_logits = router_logits.squeeze(dim=0)
416
+
417
+ # TODO: fix the weights logic to be the same as Megatron
418
+ routing_weights = F.softmax(router_logits, dim=1)
419
+ routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
420
+ # routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
421
+ # commenting the statement above for LOLA and removing the "/" operator to avoid getting weights as 1
422
+ routing_weights = routing_weights.sum(dim=-1, keepdim=True)
423
+ routing_weights = routing_weights.to(hidden_states.dtype)
424
+
425
+ final_hidden_states = torch.zeros(
426
+ (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
427
+ )
428
+ expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
429
+ for expert_idx in range(self.num_experts):
430
+ expert_layer = self.experts[expert_idx]
431
+ idx, top_x = torch.where(expert_mask[expert_idx])
432
+
433
+ if top_x.shape[0] == 0:
434
+ continue
435
+
436
+ # in torch it is faster to index using lists than torch tensors
437
+ top_x_list = top_x.tolist()
438
+ idx_list = idx.tolist()
439
+
440
+ # Index the correct hidden states and compute the expert hidden state for
441
+ # the current expert. We need to make sure to multiply the output hidden
442
+ # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
443
+ current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
444
+ current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
445
+
446
+ # However `index_add_` only support torch tensors for indexing so we'll use
447
+ # the `top_x` tensor here.
448
+ final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
449
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
450
+ return final_hidden_states, router_logits
451
+
452
+ class LOLAAttention(GPT2Attention):
453
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
454
+ super(GPT2Attention, SequenceClassifierOutputWithPast).__init__()
455
+
456
+ max_positions = config.max_position_embeddings
457
+ self.register_buffer(
458
+ "bias",
459
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
460
+ 1, 1, max_positions, max_positions
461
+ ),
462
+ #persistent=False,
463
+ )
464
+ self.register_buffer("masked_bias", torch.tensor(-1e4),
465
+ #persistent=False
466
+ )
467
+
468
+ self.embed_dim = config.hidden_size
469
+ self.num_heads = config.num_attention_heads
470
+ self.head_dim = self.embed_dim // self.num_heads
471
+ self.split_size = self.embed_dim
472
+ if self.head_dim * self.num_heads != self.embed_dim:
473
+ raise ValueError(
474
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
475
+ f" {self.num_heads})."
476
+ )
477
+
478
+ self.scale_attn_weights = config.scale_attn_weights
479
+ self.is_cross_attention = is_cross_attention
480
+
481
+ # Layer-wise attention scaling, reordering, and upcasting
482
+ self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
483
+ self.layer_idx = layer_idx
484
+ self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
485
+
486
+ if self.is_cross_attention:
487
+ self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
488
+ self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
489
+ else:
490
+ self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
491
+ self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
492
+
493
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
494
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
495
+
496
+ self.pruned_heads = set()
497
+
498
+
499
+ class LOLALMHeadModel(GPT2LMHeadModel):
500
+
501
+ config_class = LOLAConfig
502
+
503
+ def __init__(self, config):
504
+ # preventing initiation of GPT2LMHeadModel directly
505
+ super(GPT2LMHeadModel, self).__init__(config)
506
+ self.transformer = LOLAModel(config)
507
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
508
+
509
+ # Model parallel
510
+ self.model_parallel = False
511
+ self.device_map = None
512
+
513
+ # Initialize weights and apply final processing
514
+ self.post_init()
515
+
516
+
517
+ class LOLADoubleHeadsModel(GPT2DoubleHeadsModel):
518
+
519
+ config_class = LOLAConfig
520
+
521
+ def __init__(self, config):
522
+ super(GPT2DoubleHeadsModel, self).__init__(config)
523
+ config.num_labels = 1
524
+ self.transformer = LOLAModel(config)
525
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
526
+ self.multiple_choice_head = SequenceSummary(config)
527
+
528
+ # Model parallel
529
+ self.model_parallel = False
530
+ self.device_map = None
531
+
532
+ # Initialize weights and apply final processing
533
+ self.post_init()
534
+
535
+
536
+ class LOLAForSequenceClassification(GPT2ForSequenceClassification):
537
+
538
+ config_class = LOLAConfig
539
+
540
+ def __init__(self, config):
541
+ super(GPT2ForSequenceClassification, self).__init__(config)
542
+ self.num_labels = config.num_labels
543
+ self.transformer = LOLAModel(config)
544
+ self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
545
+
546
+ # Model parallel
547
+ self.model_parallel = False
548
+ self.device_map = None
549
+
550
+ # Initialize weights and apply final processing
551
+ self.post_init()
552
+
553
+ class LOLAForTokenClassification(GPT2ForTokenClassification):
554
+
555
+ config_class = LOLAConfig
556
+
557
+ def __init__(self, config):
558
+ super(GPT2ForTokenClassification, self).__init__(config)
559
+ self.num_labels = config.num_labels
560
+
561
+ self.transformer = LOLAModel(config)
562
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
563
+ classifier_dropout = config.classifier_dropout
564
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
565
+ classifier_dropout = config.hidden_dropout
566
+ else:
567
+ classifier_dropout = 0.1
568
+ self.dropout = nn.Dropout(classifier_dropout)
569
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
570
+
571
+ # Model parallel
572
+ self.model_parallel = False
573
+ self.device_map = None
574
+
575
+ # Initialize weights and apply final processing
576
+ self.post_init()
577
+
578
+ class LOLAForQuestionAnswering(GPT2PreTrainedModel):
579
+
580
+ config_class = LOLAConfig
581
+
582
+ def __init__(self, config):
583
+ super().__init__(config)
584
+ self.num_labels = config.num_labels
585
+ self.transformer = LOLAModel(config)
586
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
587
+
588
+ # Model parallel
589
+ self.model_parallel = False
590
+ self.device_map = None
591
+
592
+ # Initialize weights and apply final processing
593
+ self.post_init()
594
+
595
+ def forward(
596
+ self,
597
+ input_ids: Optional[torch.LongTensor] = None,
598
+ attention_mask: Optional[torch.FloatTensor] = None,
599
+ token_type_ids: Optional[torch.LongTensor] = None,
600
+ position_ids: Optional[torch.LongTensor] = None,
601
+ head_mask: Optional[torch.FloatTensor] = None,
602
+ inputs_embeds: Optional[torch.FloatTensor] = None,
603
+ start_positions: Optional[torch.LongTensor] = None,
604
+ end_positions: Optional[torch.LongTensor] = None,
605
+ output_attentions: Optional[bool] = None,
606
+ output_hidden_states: Optional[bool] = None,
607
+ return_dict: Optional[bool] = None,
608
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
609
+ r"""
610
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
611
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
612
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
613
+ are not taken into account for computing the loss.
614
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
615
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
616
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
617
+ are not taken into account for computing the loss.
618
+ """
619
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
620
+
621
+ outputs = self.transformer(
622
+ input_ids,
623
+ attention_mask=attention_mask,
624
+ token_type_ids=token_type_ids,
625
+ position_ids=position_ids,
626
+ head_mask=head_mask,
627
+ inputs_embeds=inputs_embeds,
628
+ output_attentions=output_attentions,
629
+ output_hidden_states=output_hidden_states,
630
+ return_dict=return_dict,
631
+ )
632
+
633
+ sequence_output = outputs[0]
634
+
635
+ logits = self.qa_outputs(sequence_output)
636
+ start_logits, end_logits = logits.split(1, dim=-1)
637
+ start_logits = start_logits.squeeze(-1).contiguous()
638
+ end_logits = end_logits.squeeze(-1).contiguous()
639
+
640
+ total_loss = None
641
+ if start_positions is not None and end_positions is not None:
642
+ # If we are on multi-GPU, split add a dimension
643
+ if len(start_positions.size()) > 1:
644
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
645
+ if len(end_positions.size()) > 1:
646
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
647
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
648
+ ignored_index = start_logits.size(1)
649
+ start_positions = start_positions.clamp(0, ignored_index)
650
+ end_positions = end_positions.clamp(0, ignored_index)
651
+
652
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
653
+ start_loss = loss_fct(start_logits, start_positions)
654
+ end_loss = loss_fct(end_logits, end_positions)
655
+ total_loss = (start_loss + end_loss) / 2
656
+
657
+ if not return_dict:
658
+ output = (start_logits, end_logits) + outputs[2:]
659
+ return ((total_loss,) + output) if total_loss is not None else output
660
+
661
+ return QuestionAnsweringModelOutput(
662
+ loss=total_loss,
663
+ start_logits=start_logits,
664
+ end_logits=end_logits,
665
+ hidden_states=outputs.hidden_states,
666
+ attentions=outputs.attentions,
667
+ )