dibsondivya
commited on
Commit
·
dc80401
1
Parent(s):
c3ce908
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- distilbert
|
4 |
+
- phm
|
5 |
+
datasets:
|
6 |
+
- custom-phm-tweets
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilbert-phmtweets-sutd
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: custom-phm-tweets
|
17 |
+
type: labelled
|
18 |
+
metrics:
|
19 |
+
- name: Accuracy
|
20 |
+
type: accuracy
|
21 |
+
value: 0.87
|
22 |
+
---
|
23 |
+
|
24 |
+
# finetuning-sentiment-model-3000-samples-5pm
|
25 |
+
|
26 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a custom tweet dataset that references public health mentions.
|
27 |
+
It achieves the following results on the evaluation set:
|
28 |
+
- Accuracy: 0.87
|
29 |
+
|
30 |
+
## Usage
|
31 |
+
|
32 |
+
`from transformers import AutoTokenizer, AutoModelForSequenceClassification`
|
33 |
+
|
34 |
+
`tokenizer = AutoTokenizer.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")`
|
35 |
+
|
36 |
+
`model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")`
|
37 |
+
|