--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co./pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.5146 - Der: 0.1869 - False Alarm: 0.0933 - Missed Detection: 0.0709 - Confusion: 0.0227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.6043 | 1.0 | 340 | 0.5075 | 0.1789 | 0.0682 | 0.0789 | 0.0318 | | 0.5766 | 2.0 | 680 | 0.5207 | 0.1951 | 0.1012 | 0.0708 | 0.0230 | | 0.5345 | 3.0 | 1020 | 0.5011 | 0.1798 | 0.0852 | 0.0716 | 0.0231 | | 0.518 | 4.0 | 1360 | 0.5344 | 0.1934 | 0.1009 | 0.0700 | 0.0225 | | 0.5147 | 5.0 | 1700 | 0.5146 | 0.1869 | 0.0933 | 0.0709 | 0.0227 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1