--- base_model: vinai/bertweet-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-base_3epoch10.2 results: [] --- # bertweet-base_3epoch10.2 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co./vinai/bertweet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8545 - Accuracy: 0.7493 - F1: 0.4663 - Precision: 0.5984 - Recall: 0.3819 - Precision Sarcastic: 0.5984 - Recall Sarcastic: 0.3819 - F1 Sarcastic: 0.4663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 174 | 1.8493 | 0.7464 | 0.4323 | 0.6036 | 0.3367 | 0.6036 | 0.3367 | 0.4323 | | No log | 2.0 | 348 | 1.5481 | 0.7522 | 0.5301 | 0.5808 | 0.4874 | 0.5808 | 0.4874 | 0.5301 | | 0.0477 | 3.0 | 522 | 1.6249 | 0.7565 | 0.4531 | 0.6364 | 0.3518 | 0.6364 | 0.3518 | 0.4531 | | 0.0477 | 4.0 | 696 | 1.6593 | 0.7464 | 0.4793 | 0.5827 | 0.4070 | 0.5827 | 0.4070 | 0.4793 | | 0.0477 | 5.0 | 870 | 1.7213 | 0.7493 | 0.42 | 0.6238 | 0.3166 | 0.6238 | 0.3166 | 0.42 | | 0.0277 | 6.0 | 1044 | 1.7249 | 0.7450 | 0.4381 | 0.5948 | 0.3467 | 0.5948 | 0.3467 | 0.4381 | | 0.0277 | 7.0 | 1218 | 1.8038 | 0.7450 | 0.4486 | 0.5902 | 0.3618 | 0.5902 | 0.3618 | 0.4486 | | 0.0277 | 8.0 | 1392 | 1.8409 | 0.7493 | 0.4387 | 0.6126 | 0.3417 | 0.6126 | 0.3417 | 0.4387 | | 0.0105 | 9.0 | 1566 | 1.8427 | 0.7522 | 0.4487 | 0.6195 | 0.3518 | 0.6195 | 0.3518 | 0.4487 | | 0.0105 | 10.0 | 1740 | 1.8545 | 0.7493 | 0.4663 | 0.5984 | 0.3819 | 0.5984 | 0.3819 | 0.4663 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1