--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Twroberta-baseB_3epoch results: [] --- # Twroberta-baseB_3epoch This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co./cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1287 - Accuracy: 0.7957 - Precision: 0.2382 - Recall: 0.3026 - F1: 0.2661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 217 | 0.1258 | 0.8571 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 434 | 0.1229 | 0.8614 | 0.3564 | 0.1624 | 0.2231 | | 0.1621 | 3.0 | 651 | 0.1287 | 0.7957 | 0.2382 | 0.3026 | 0.2661 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1