--- license: other base_model: google/gemma-2-2b-it tags: - llama-factory - full - generated_from_trainer model-index: - name: longcot_pt_GEMMA_ZD_10_23_1 results: [] --- Please Please cite me if this dataset is helpful for you!🥰 ``` @article{zhang2024llama, title={LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning}, author={Zhang, Di and Wu, Jianbo and Lei, Jingdi and Che, Tong and Li, Jiatong and Xie, Tong and Huang, Xiaoshui and Zhang, Shufei and Pavone, Marco and Li, Yuqiang and others}, journal={arXiv preprint arXiv:2410.02884}, year={2024} } @article{zhang2024accessing, title={Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B}, author={Zhang, Di and Li, Jiatong and Huang, Xiaoshui and Zhou, Dongzhan and Li, Yuqiang and Ouyang, Wanli}, journal={arXiv preprint arXiv:2406.07394}, year={2024} } ``` # longcot_pt_GEMMA_ZD_10_23_1 This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co./google/gemma-2-2b-it) on the [OpenLongCoT](https://huggingface.co./datasets/qq8933/OpenLongCoT-Pretrain) dataset. This model can read and output o1-like LongCoT which targeting work with LLaMA-O1 runtime frameworks. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1