--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-brain-tumor-detection results: [] --- # vit-base-brain-tumor-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5832 - Accuracy: 0.785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9535 | 0.4 | 100 | 0.8966 | 0.618 | | 0.862 | 0.8 | 200 | 1.1149 | 0.561 | | 0.7373 | 1.2 | 300 | 0.8543 | 0.605 | | 0.6476 | 1.6 | 400 | 0.7307 | 0.666 | | 0.6712 | 2.0 | 500 | 0.6954 | 0.694 | | 0.4892 | 2.4 | 600 | 0.6391 | 0.707 | | 0.5801 | 2.8 | 700 | 0.6247 | 0.708 | | 0.3505 | 3.2 | 800 | 0.6056 | 0.778 | | 0.3503 | 3.6 | 900 | 0.6264 | 0.743 | | 0.3416 | 4.0 | 1000 | 0.5832 | 0.785 | | 0.1427 | 4.4 | 1100 | 0.7297 | 0.769 | | 0.1982 | 4.8 | 1200 | 0.7761 | 0.73 | | 0.193 | 5.2 | 1300 | 0.8467 | 0.741 | | 0.1831 | 5.6 | 1400 | 0.6975 | 0.774 | | 0.2612 | 6.0 | 1500 | 0.8719 | 0.775 | | 0.102 | 6.4 | 1600 | 0.9045 | 0.788 | | 0.1029 | 6.8 | 1700 | 0.9655 | 0.783 | | 0.0735 | 7.2 | 1800 | 0.9906 | 0.78 | | 0.0715 | 7.6 | 1900 | 0.8893 | 0.787 | | 0.1254 | 8.0 | 2000 | 1.1221 | 0.761 | | 0.021 | 8.4 | 2100 | 1.1648 | 0.779 | | 0.0133 | 8.8 | 2200 | 0.9857 | 0.806 | | 0.0086 | 9.2 | 2300 | 1.0365 | 0.799 | | 0.0223 | 9.6 | 2400 | 0.9826 | 0.812 | | 0.0023 | 10.0 | 2500 | 1.0697 | 0.795 | | 0.0021 | 10.4 | 2600 | 1.0490 | 0.815 | | 0.0401 | 10.8 | 2700 | 1.1594 | 0.8 | | 0.0012 | 11.2 | 2800 | 1.0811 | 0.817 | | 0.0034 | 11.6 | 2900 | 1.0956 | 0.825 | | 0.0012 | 12.0 | 3000 | 1.2010 | 0.808 | | 0.0011 | 12.4 | 3100 | 1.1712 | 0.81 | | 0.0092 | 12.8 | 3200 | 1.1814 | 0.813 | | 0.0007 | 13.2 | 3300 | 1.1677 | 0.818 | | 0.0007 | 13.6 | 3400 | 1.1723 | 0.818 | | 0.0006 | 14.0 | 3500 | 1.1852 | 0.821 | | 0.0005 | 14.4 | 3600 | 1.1928 | 0.82 | | 0.0005 | 14.8 | 3700 | 1.2030 | 0.819 | | 0.0005 | 15.2 | 3800 | 1.2093 | 0.818 | | 0.0005 | 15.6 | 3900 | 1.2160 | 0.818 | | 0.0004 | 16.0 | 4000 | 1.2232 | 0.819 | | 0.0004 | 16.4 | 4100 | 1.2302 | 0.819 | | 0.0004 | 16.8 | 4200 | 1.2350 | 0.819 | | 0.0004 | 17.2 | 4300 | 1.2400 | 0.82 | | 0.0004 | 17.6 | 4400 | 1.2442 | 0.821 | | 0.0004 | 18.0 | 4500 | 1.2483 | 0.821 | | 0.0004 | 18.4 | 4600 | 1.2518 | 0.821 | | 0.0004 | 18.8 | 4700 | 1.2546 | 0.821 | | 0.0004 | 19.2 | 4800 | 1.2561 | 0.821 | | 0.0004 | 19.6 | 4900 | 1.2574 | 0.82 | | 0.0004 | 20.0 | 5000 | 1.2577 | 0.82 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1