File size: 10,747 Bytes
5ff507b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# train.py
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from sklearn.model_selection import KFold
from transformers import Trainer, TrainingArguments
from sklearn.metrics import ndcg_score
import json
from data_processing import load_data, EmbeddingGenerator, prepare_labels
from utils import compute_ndcg
import numpy as np
from sklearn.metrics import ndcg_score, mean_squared_error
# Generate random predictions based on label distribution
def generate_random_predictions(y_true):
return np.random.uniform(y_true.min(), y_true.max(), size=y_true.shape)
# Evaluate relative lift
def calculate_relative_lift(y_true, model_predictions, metric="ndcg"):
random_predictions = generate_random_predictions(y_true)
if metric == "ndcg":
model_score = ndcg_score([y_true], [model_predictions])
random_score = ndcg_score([y_true], [random_predictions])
lift = (model_score - random_score) / random_score
elif metric == "mse":
model_score = mean_squared_error(y_true, model_predictions)
random_score = mean_squared_error(y_true, random_predictions)
lift = (random_score - model_score) / random_score
else:
raise ValueError("Unsupported metric")
return lift, model_score, random_score
# Define your model architecture
class MultiOutputRegressor(nn.Module):
def __init__(self, hidden_size, num_outputs):
super(MultiOutputRegressor, self).__init__()
self.regressor_head = nn.Linear(hidden_size, num_outputs)
def forward(self, input_ids):
return self.regressor_head(input_ids)
# Dataset class
class EmbeddingDataset(torch.utils.data.Dataset):
def __init__(self, embeddings, labels):
self.embeddings = embeddings
self.labels = labels
def __len__(self):
return len(self.embeddings)
def __getitem__(self, idx):
return {"input_ids": self.embeddings[idx], "label": self.labels[idx]}
# Custom data collator
class CustomDataCollator:
def __call__(self, features):
embeddings = torch.stack([item["input_ids"] for item in features])
labels = torch.stack([item["label"] for item in features])
batch_data = {"input_ids": embeddings, "label": labels}
return batch_data
# Custom Trainer
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
input_ids = inputs["input_ids"].to(self.args.device)
labels = inputs["label"].to(self.args.device)
outputs = model(input_ids)
loss_fct = nn.MSELoss()
loss = loss_fct(outputs, labels)
return (loss, outputs) if return_outputs else loss
def main():
# Load data
outdata = load_data("labeled_users.json")
# Extract descriptions
descriptions = [record['description'] for record in outdata]
# Generate embeddings
embedder = EmbeddingGenerator()
X_embeddings = embedder.generate_embeddings(descriptions)
# Prepare labels
y_matrix, label2id, id2label = prepare_labels(outdata)
# Save label mappings for later use
mappings = {'label2id': label2id, 'id2label': id2label}
with open('label_mappings.json', 'w') as f:
json.dump(mappings, f)
# K-Fold Cross Validation
train_embeddings = torch.tensor(X_embeddings, dtype=torch.float)
train_labels = torch.tensor(y_matrix, dtype=torch.float)
# Device configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_collator = CustomDataCollator()
n_splits = 5 # Number of folds
kf = KFold(n_splits=n_splits, shuffle=True, random_state=42)
hidden_size = train_embeddings.shape[1]
num_outputs = train_labels.shape[1]
fold_ndcg_scores = []
all_preds = []
for fold, (train_index, val_index) in enumerate(kf.split(train_embeddings)):
print(f"Fold {fold + 1}/{n_splits}")
# Split data into training and validation sets
X_train_fold = train_embeddings[train_index]
y_train_fold = train_labels[train_index]
X_val_fold = train_embeddings[val_index]
y_val_fold = train_labels[val_index]
# Create datasets
train_dataset = EmbeddingDataset(X_train_fold, y_train_fold)
val_dataset = EmbeddingDataset(X_val_fold, y_val_fold)
# Initialize the model
model = MultiOutputRegressor(hidden_size=hidden_size, num_outputs=num_outputs)
model.to(device)
# Training arguments
training_args = TrainingArguments(
output_dir=f"./results_fold_{fold+1}",
num_train_epochs=10,
per_device_train_batch_size=64,
logging_dir=f"./logs_fold_{fold+1}",
evaluation_strategy="no", # No evaluation during training
save_strategy="no", # Not saving checkpoints
disable_tqdm=True, # Disable progress bar
learning_rate=1e-5,
weight_decay=0.01, # Apply a small weight decay
max_grad_norm=1.0 # Clip gradients to 1.0
)
# Initialize Trainer
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
# Train the model
trainer.train()
# Evaluate the model on the validation set
val_dataloader = DataLoader(val_dataset, batch_size=8, collate_fn=data_collator)
fold_preds = []
fold_labels = []
model.eval()
with torch.no_grad():
for batch in val_dataloader:
input_ids = batch["input_ids"].to(device)
labels = batch["label"].to(device)
outputs = model(input_ids)
fold_preds.append(outputs.cpu().numpy())
fold_labels.append(labels.cpu().numpy())
# Concatenate all predictions and labels for the fold
y_pred = np.concatenate(fold_preds, axis=0)
y_true = np.concatenate(fold_labels, axis=0)
# Append fold predictions to all_preds
all_preds.extend(y_pred)
# Compute NDCG scores
all_ndcgs = []
lifts = []
for i in range(len(y_true)):
actual_weights = y_true[i]
predicted_weights = y_pred[i]
ndcg = ndcg_score([actual_weights], [predicted_weights])
lift, model_score, random_score = calculate_relative_lift(actual_weights, predicted_weights, metric="ndcg")
lifts.append(lift)
all_ndcgs.append(ndcg)
# Average NDCG score for the current fold
if all_ndcgs:
avg_ndcg = np.mean(all_ndcgs)
else:
avg_ndcg = 0.0 # Handle cases where there are no non-zero weights
if lifts:
avg_lift = np.mean(lifts)
else:
avg_lift = 0.0 # Handle cases where there are no non-zero weights
print(f"Average NDCG for fold {fold + 1}: {avg_ndcg:.4f}")
print(f"Average Lift for fold {fold + 1}: {avg_lift:.4f}")
fold_ndcg_scores.append(avg_ndcg)
# After all folds
overall_avg_ndcg = np.mean(fold_ndcg_scores)
print(f"\nOverall Average NDCG across all folds: {overall_avg_ndcg:.4f}")
# Store embeddings and predictions in outdata
for idx, record in enumerate(outdata):
record['embedding'] = X_embeddings[idx].tolist()
# Map predictions to labels
pred = all_preds[idx]
label_pred_dict = {id2label[i]: float(pred[i]) for i in range(len(pred))}
record['predictions'] = label_pred_dict
# Save enriched data
with open("enriched_data.json", "w") as f:
for row in outdata:
_ = f.write(json.dumps(row) + '\n')
# Save full model trained on entire dataset
# Re-initialize the model
model = MultiOutputRegressor(hidden_size=hidden_size, num_outputs=num_outputs)
model.to(device)
# Create the dataset with all data
train_dataset = EmbeddingDataset(train_embeddings, train_labels)
# Training arguments
training_args = TrainingArguments(
output_dir="./final_model",
num_train_epochs=10, # Adjust as needed
per_device_train_batch_size=8,
logging_dir="./logs_final",
evaluation_strategy="no",
save_strategy="no",
disable_tqdm=False,
)
# Initialize the Trainer
trainer = CustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
# Train the model on the entire dataset
trainer.train()
# Save the model
model_save_path = 'multioutput_regressor.pth'
torch.save(model.state_dict(), model_save_path)
print(f"Model saved to {model_save_path}")
# Optional: Demonstrate loading and using the model
load_and_predict(embedder, hidden_size, num_outputs, device)
def load_and_predict(embedder, hidden_size, num_outputs, device):
"""
Load the saved model and label mappings, make predictions on new data,
and map the predictions to labels.
"""
# Load the label mappings
with open('label_mappings.json', 'r') as f:
mappings = json.load(f)
id2label = mappings['id2label']
# Load the model
model_save_path = 'multioutput_regressor.pth'
loaded_model = MultiOutputRegressor(hidden_size=hidden_size, num_outputs=num_outputs)
loaded_model.load_state_dict(torch.load(model_save_path, map_location=device))
loaded_model.to(device)
loaded_model.eval()
# Prepare new data for prediction
new_sentences = [
"This is a test sentence.",
"Another example of a sentence to predict."
]
# Generate embeddings for new sentences
new_embeddings = embedder.generate_embeddings(new_sentences)
new_embeddings_tensor = torch.tensor(new_embeddings, dtype=torch.float).to(device)
# Make predictions
with torch.no_grad():
predictions = loaded_model(new_embeddings_tensor)
predictions = predictions.cpu().numpy()
# Map predictions to labels
for sentence, pred in zip(new_sentences, predictions):
label_pred_dict = {id2label[str(i)]: float(pred[i]) for i in range(len(pred))}
print(f"Sentence: {sentence}")
print("Predictions:")
for label, value in label_pred_dict.items():
print(f" {label}: {value}")
print()
if __name__ == "__main__":
main()
# loaded_model = MultiOutputRegressor(hidden_size=hidden_size, num_outputs=num_outputs)
# loaded_model.load_state_dict(torch.load(model_save_path, map_location=device))
# loaded_model.to(device)
# loaded_model.eval()
|