--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased datasets: - stanfordnlp/imdb tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-imdb results: [] --- # distilbert-base-uncased-imdb This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on the [imdb](https://huggingface.co./datasets/stanfordnlp/imdb) dataset. It achieves the following results on the evaluation set: - Loss: 0.4367 - Accuracy: 0.9327 - F1: 0.9336 - Precision: 0.9212 - Recall: 0.9463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2601 | 1.0 | 3125 | 0.3550 | 0.8857 | 0.8744 | 0.9709 | 0.7953 | | 0.1842 | 2.0 | 6250 | 0.2355 | 0.9327 | 0.9327 | 0.9328 | 0.9326 | | 0.1191 | 3.0 | 9375 | 0.3287 | 0.9311 | 0.9303 | 0.9417 | 0.9191 | | 0.0452 | 4.0 | 12500 | 0.4053 | 0.9331 | 0.9337 | 0.9256 | 0.942 | | 0.0299 | 5.0 | 15625 | 0.4367 | 0.9327 | 0.9336 | 0.9212 | 0.9463 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2