File size: 2,731 Bytes
f8e9955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db474e3
 
 
 
 
 
f8e9955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db474e3
 
f8e9955
 
 
 
 
db474e3
 
 
 
 
 
 
 
 
 
 
 
f8e9955
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
base_model: ybelkada/flan-t5-xl-sharded-bf16
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-xl-gen5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-xl-gen5

This model is a fine-tuned version of [ybelkada/flan-t5-xl-sharded-bf16](https://huggingface.co./ybelkada/flan-t5-xl-sharded-bf16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6594
- Rouge1: 34.2696
- Rouge2: 25.7973
- Rougel: 30.5609
- Rougelsum: 30.9651
- Gen Len: 10.5326

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 328  | 8.0966          | 16.5418 | 10.3523 | 13.972  | 14.1918   | 15.5773 |
| 18.3143       | 2.0   | 656  | 0.9260          | 31.5806 | 27.0287 | 29.6916 | 30.0327   | 8.8969  |
| 18.3143       | 3.0   | 984  | 0.7708          | 22.6847 | 15.805  | 19.6336 | 19.8945   | 13.8076 |
| 1.0739        | 4.0   | 1312 | 0.7308          | 35.1675 | 27.3998 | 31.8527 | 32.0356   | 9.6186  |
| 0.8085        | 5.0   | 1640 | 0.7084          | 34.4346 | 26.202  | 30.8999 | 31.212    | 10.1168 |
| 0.8085        | 6.0   | 1968 | 0.6924          | 34.3345 | 26.0144 | 30.692  | 31.0384   | 10.2680 |
| 0.7597        | 7.0   | 2296 | 0.6813          | 34.3854 | 26.0495 | 30.8335 | 31.1696   | 10.3196 |
| 0.7442        | 8.0   | 2624 | 0.6729          | 34.3758 | 26.0079 | 30.7863 | 31.1239   | 10.3608 |
| 0.7442        | 9.0   | 2952 | 0.6670          | 34.2115 | 25.7443 | 30.5369 | 30.9282   | 10.4983 |
| 0.7252        | 10.0  | 3280 | 0.6625          | 34.2518 | 25.7147 | 30.5433 | 30.9116   | 10.5292 |
| 0.7168        | 11.0  | 3608 | 0.6601          | 34.0539 | 25.5073 | 30.329  | 30.6828   | 10.6186 |
| 0.7168        | 12.0  | 3936 | 0.6594          | 34.2696 | 25.7973 | 30.5609 | 30.9651   | 10.5326 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0