File size: 2,008 Bytes
f8e9955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
base_model: ybelkada/flan-t5-xl-sharded-bf16
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-xl-gen5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-xl-gen5
This model is a fine-tuned version of [ybelkada/flan-t5-xl-sharded-bf16](https://huggingface.co./ybelkada/flan-t5-xl-sharded-bf16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7669
- Rouge1: 24.6538
- Rouge2: 17.821
- Rougel: 21.5884
- Rougelsum: 21.9045
- Gen Len: 13.0515
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 328 | 24.8987 | 29.9366 | 22.9687 | 26.9975 | 27.1774 | 11.1203 |
| 25.467 | 2.0 | 656 | 1.3504 | 51.142 | 49.8705 | 51.1588 | 51.1528 | 0.0 |
| 25.467 | 3.0 | 984 | 0.8221 | 19.5594 | 12.7325 | 16.4586 | 16.7605 | 14.9278 |
| 1.8759 | 4.0 | 1312 | 0.7783 | 21.8348 | 14.9645 | 18.7764 | 19.0709 | 14.1100 |
| 0.8715 | 5.0 | 1640 | 0.7669 | 24.6538 | 17.821 | 21.5884 | 21.9045 | 13.0515 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|