File size: 2,008 Bytes
f8e9955
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: ybelkada/flan-t5-xl-sharded-bf16
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-xl-gen5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-xl-gen5

This model is a fine-tuned version of [ybelkada/flan-t5-xl-sharded-bf16](https://huggingface.co./ybelkada/flan-t5-xl-sharded-bf16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7669
- Rouge1: 24.6538
- Rouge2: 17.821
- Rougel: 21.5884
- Rougelsum: 21.9045
- Gen Len: 13.0515

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 328  | 24.8987         | 29.9366 | 22.9687 | 26.9975 | 27.1774   | 11.1203 |
| 25.467        | 2.0   | 656  | 1.3504          | 51.142  | 49.8705 | 51.1588 | 51.1528   | 0.0     |
| 25.467        | 3.0   | 984  | 0.8221          | 19.5594 | 12.7325 | 16.4586 | 16.7605   | 14.9278 |
| 1.8759        | 4.0   | 1312 | 0.7783          | 21.8348 | 14.9645 | 18.7764 | 19.0709   | 14.1100 |
| 0.8715        | 5.0   | 1640 | 0.7669          | 24.6538 | 17.821  | 21.5884 | 21.9045   | 13.0515 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0