--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: LLMGUARD results: [] --- # LLMGUARD This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3081 - Accuracy: 0.7230 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 32 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.5456 | 1.0 | 876 | 0.6853 | 0.7600 | | 0.6286 | 2.0 | 1752 | 0.6386 | 0.7755 | | 0.5239 | 3.0 | 2628 | 0.6216 | 0.7690 | | 0.4708 | 4.0 | 3504 | 0.6294 | 0.7684 | | 0.4224 | 5.0 | 4380 | 0.6622 | 0.7690 | | 0.3963 | 6.0 | 5256 | 0.6938 | 0.7558 | | 0.3677 | 7.0 | 6132 | 0.7313 | 0.7575 | | 0.3486 | 8.0 | 7008 | 0.7668 | 0.7508 | | 0.3192 | 9.0 | 7884 | 0.7856 | 0.7488 | | 0.3119 | 10.0 | 8760 | 0.8193 | 0.7413 | | 0.297 | 11.0 | 9636 | 0.8250 | 0.7385 | | 0.2826 | 12.0 | 10512 | 0.8906 | 0.7264 | | 0.2664 | 13.0 | 11388 | 0.8942 | 0.7301 | | 0.2614 | 14.0 | 12264 | 0.9402 | 0.7281 | | 0.2585 | 15.0 | 13140 | 0.9722 | 0.7361 | | 0.2603 | 16.0 | 14016 | 1.0199 | 0.7285 | | 0.2366 | 17.0 | 14892 | 1.0044 | 0.7290 | | 0.2406 | 18.0 | 15768 | 1.0022 | 0.7237 | | 0.2341 | 19.0 | 16644 | 1.0498 | 0.7233 | | 0.2392 | 20.0 | 17520 | 1.0741 | 0.7258 | | 0.2135 | 21.0 | 18396 | 1.1113 | 0.7233 | | 0.2166 | 22.0 | 19272 | 1.1229 | 0.7288 | | 0.216 | 23.0 | 20148 | 1.1429 | 0.7204 | | 0.2164 | 24.0 | 21024 | 1.1872 | 0.7261 | | 0.2079 | 25.0 | 21900 | 1.2140 | 0.7161 | | 0.2027 | 26.0 | 22776 | 1.2285 | 0.7240 | | 0.201 | 27.0 | 23652 | 1.2247 | 0.7250 | | 0.2052 | 28.0 | 24528 | 1.2356 | 0.7207 | | 0.1959 | 29.0 | 25404 | 1.2895 | 0.7217 | | 0.1975 | 30.0 | 26280 | 1.2861 | 0.7245 | | 0.1937 | 31.0 | 27156 | 1.3034 | 0.7211 | | 0.194 | 32.0 | 28032 | 1.3081 | 0.7230 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0