--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: LLMGUARD results: [] --- # LLMGUARD This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6824 - Accuracy: 0.7670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9725 | 1.0 | 876 | 1.0953 | 0.6834 | | 0.9389 | 2.0 | 1752 | 0.7982 | 0.7514 | | 0.7549 | 3.0 | 2628 | 0.7214 | 0.7647 | | 0.6895 | 4.0 | 3504 | 0.6963 | 0.7680 | | 0.6712 | 5.0 | 4380 | 0.6856 | 0.7664 | | 0.653 | 6.0 | 5256 | 0.6824 | 0.7670 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0