Upload 01-tgi-ie-benchmark.ipynb
Browse files- 01-tgi-ie-benchmark.ipynb +38 -17
01-tgi-ie-benchmark.ipynb
CHANGED
@@ -1,5 +1,20 @@
|
|
1 |
{
|
2 |
"cells": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
"cell_type": "markdown",
|
5 |
"id": "602a8c54-b434-4d8e-bc72-824c642fbdb5",
|
@@ -76,16 +91,16 @@
|
|
76 |
"outputs": [],
|
77 |
"source": [
|
78 |
"# Endpoint\n",
|
79 |
-
"ENDPOINT_NAME=\"
|
80 |
-
"NAMESPACE = '
|
81 |
-
"MODEL = '
|
82 |
-
"INSTANCE_TYPE = 'nvidia-
|
83 |
"\n",
|
84 |
"# Simulation\n",
|
85 |
"RESULTS_DIR = proj_dir/'tgi_benchmark_results'/INSTANCE_TYPE\n",
|
86 |
-
"tgi_bss = [
|
87 |
-
"INPUT_TOKENS =
|
88 |
-
"OUTPUT_TOKENS =
|
89 |
]
|
90 |
},
|
91 |
{
|
@@ -129,8 +144,8 @@
|
|
129 |
" region=\"us-east-1\",\n",
|
130 |
" vendor=\"aws\",\n",
|
131 |
" accelerator=\"gpu\",\n",
|
132 |
-
" instance_size=\"
|
133 |
-
" instance_type='nvidia-
|
134 |
" min_replica=0,\n",
|
135 |
" max_replica=1,\n",
|
136 |
" namespace=NAMESPACE,\n",
|
@@ -141,9 +156,10 @@
|
|
141 |
" \"MAX_TOTAL_TOKENS\": f\"{INPUT_TOKENS + OUTPUT_TOKENS}\",\n",
|
142 |
" \"MAX_BATCH_SIZE\": f\"{MAX_BATCH_SIZE}\",\n",
|
143 |
" \"HF_TOKEN\": get_token(),\n",
|
|
|
144 |
" \"MODEL_ID\": \"/repository\",\n",
|
145 |
" },\n",
|
146 |
-
" \"url\": \"ghcr.io/huggingface/text-generation-inference:2.0
|
147 |
" },\n",
|
148 |
" type=\"protected\",\n",
|
149 |
" )\n",
|
@@ -179,7 +195,8 @@
|
|
179 |
" # Set environment variables\n",
|
180 |
" env = os.environ.copy()\n",
|
181 |
" env['HUGGINGFACE_API_BASE'] = endpoint.url\n",
|
182 |
-
" env['
|
|
|
183 |
" # Convert pathlib.Path to string and append to PYTHONPATH\n",
|
184 |
" env['PYTHONPATH'] = str(LLMPerf_path) + (os.pathsep + env.get('PYTHONPATH', ''))\n",
|
185 |
"\n",
|
@@ -200,16 +217,16 @@
|
|
200 |
" # Construct the command to run the benchmark script\n",
|
201 |
" command = [\n",
|
202 |
" \"python\", benchmark_script,\n",
|
203 |
-
" \"--model\", f\"
|
204 |
" \"--mean-input-tokens\", f\"{INPUT_TOKENS}\",\n",
|
205 |
" \"--stddev-input-tokens\", \"10\",\n",
|
206 |
-
" \"--mean-output-tokens\", \"
|
207 |
" \"--stddev-output-tokens\", \"5\",\n",
|
208 |
" \"--max-num-completed-requests\", str(min(max_requests, 1500)),\n",
|
209 |
" \"--timeout\", \"7200\",\n",
|
210 |
" \"--num-concurrent-requests\", str(vu),\n",
|
211 |
" \"--results-dir\", str(results_dir),\n",
|
212 |
-
" \"--llm-api\", \"
|
213 |
" \"--additional-sampling-params\", '{}'\n",
|
214 |
" ]\n",
|
215 |
"\n",
|
@@ -222,7 +239,7 @@
|
|
222 |
" return e.output.decode(), False\n",
|
223 |
"\n",
|
224 |
"def find_max_working_batch_size(endpoint, tgi_bs):\n",
|
225 |
-
" batch_sizes = [8, 16, 32
|
226 |
" max_working = None\n",
|
227 |
" for size in tqdm(batch_sizes):\n",
|
228 |
" tqdm.write(f\"Running: TGIBS {tgi_bs} Client Requests {size}\")\n",
|
@@ -255,7 +272,11 @@
|
|
255 |
"source": [
|
256 |
"for tgi_bs in tqdm(tgi_bss):\n",
|
257 |
" name = f\"{ENDPOINT_NAME}--tgibs-{tgi_bs}\"\n",
|
258 |
-
"
|
|
|
|
|
|
|
|
|
259 |
" endpoint.wait()\n",
|
260 |
" tqdm.write(f\"Endpoint Created: {name}\")\n",
|
261 |
" max_batch_size = find_max_working_batch_size(endpoint=endpoint, tgi_bs=tgi_bs)\n",
|
@@ -266,7 +287,7 @@
|
|
266 |
{
|
267 |
"cell_type": "code",
|
268 |
"execution_count": null,
|
269 |
-
"id": "
|
270 |
"metadata": {},
|
271 |
"outputs": [],
|
272 |
"source": []
|
|
|
1 |
{
|
2 |
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "a6221e83-9d8f-4716-aeda-b40847931f56",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"%%bash\n",
|
13 |
+
"git clone https://github.com/philschmid/llmperf.git\n",
|
14 |
+
"cd llmperf\n",
|
15 |
+
"pip install -e . -q"
|
16 |
+
]
|
17 |
+
},
|
18 |
{
|
19 |
"cell_type": "markdown",
|
20 |
"id": "602a8c54-b434-4d8e-bc72-824c642fbdb5",
|
|
|
91 |
"outputs": [],
|
92 |
"source": [
|
93 |
"# Endpoint\n",
|
94 |
+
"ENDPOINT_NAME=\"mixtral-exp\"\n",
|
95 |
+
"NAMESPACE = 'HF-test-lab'\n",
|
96 |
+
"MODEL = 'TheBloke/mixtral-8x7b-v0.1-GPTQ'\n",
|
97 |
+
"INSTANCE_TYPE = 'nvidia-l4_AWQ'\n",
|
98 |
"\n",
|
99 |
"# Simulation\n",
|
100 |
"RESULTS_DIR = proj_dir/'tgi_benchmark_results'/INSTANCE_TYPE\n",
|
101 |
+
"tgi_bss = [1]\n",
|
102 |
+
"INPUT_TOKENS = 800\n",
|
103 |
+
"OUTPUT_TOKENS = 1600"
|
104 |
]
|
105 |
},
|
106 |
{
|
|
|
144 |
" region=\"us-east-1\",\n",
|
145 |
" vendor=\"aws\",\n",
|
146 |
" accelerator=\"gpu\",\n",
|
147 |
+
" instance_size=\"x4\",\n",
|
148 |
+
" instance_type='nvidia-l4',\n",
|
149 |
" min_replica=0,\n",
|
150 |
" max_replica=1,\n",
|
151 |
" namespace=NAMESPACE,\n",
|
|
|
156 |
" \"MAX_TOTAL_TOKENS\": f\"{INPUT_TOKENS + OUTPUT_TOKENS}\",\n",
|
157 |
" \"MAX_BATCH_SIZE\": f\"{MAX_BATCH_SIZE}\",\n",
|
158 |
" \"HF_TOKEN\": get_token(),\n",
|
159 |
+
" \"QUANTIZE\":\"awq\",\n",
|
160 |
" \"MODEL_ID\": \"/repository\",\n",
|
161 |
" },\n",
|
162 |
+
" \"url\": \"ghcr.io/huggingface/text-generation-inference:2.2.0\",\n",
|
163 |
" },\n",
|
164 |
" type=\"protected\",\n",
|
165 |
" )\n",
|
|
|
195 |
" # Set environment variables\n",
|
196 |
" env = os.environ.copy()\n",
|
197 |
" env['HUGGINGFACE_API_BASE'] = endpoint.url\n",
|
198 |
+
" env['HUGGINGFACE_API_TOKEN'] = get_token()\n",
|
199 |
+
" env['MODEL_ID'] = MODEL\n",
|
200 |
" # Convert pathlib.Path to string and append to PYTHONPATH\n",
|
201 |
" env['PYTHONPATH'] = str(LLMPerf_path) + (os.pathsep + env.get('PYTHONPATH', ''))\n",
|
202 |
"\n",
|
|
|
217 |
" # Construct the command to run the benchmark script\n",
|
218 |
" command = [\n",
|
219 |
" \"python\", benchmark_script,\n",
|
220 |
+
" \"--model\", f\"{MODEL}\",\n",
|
221 |
" \"--mean-input-tokens\", f\"{INPUT_TOKENS}\",\n",
|
222 |
" \"--stddev-input-tokens\", \"10\",\n",
|
223 |
+
" \"--mean-output-tokens\", f\"{OUTPUT_TOKENS}\",\n",
|
224 |
" \"--stddev-output-tokens\", \"5\",\n",
|
225 |
" \"--max-num-completed-requests\", str(min(max_requests, 1500)),\n",
|
226 |
" \"--timeout\", \"7200\",\n",
|
227 |
" \"--num-concurrent-requests\", str(vu),\n",
|
228 |
" \"--results-dir\", str(results_dir),\n",
|
229 |
+
" \"--llm-api\", \"huggingface\",\n",
|
230 |
" \"--additional-sampling-params\", '{}'\n",
|
231 |
" ]\n",
|
232 |
"\n",
|
|
|
239 |
" return e.output.decode(), False\n",
|
240 |
"\n",
|
241 |
"def find_max_working_batch_size(endpoint, tgi_bs):\n",
|
242 |
+
" batch_sizes = [8, 16, 32]\n",
|
243 |
" max_working = None\n",
|
244 |
" for size in tqdm(batch_sizes):\n",
|
245 |
" tqdm.write(f\"Running: TGIBS {tgi_bs} Client Requests {size}\")\n",
|
|
|
272 |
"source": [
|
273 |
"for tgi_bs in tqdm(tgi_bss):\n",
|
274 |
" name = f\"{ENDPOINT_NAME}--tgibs-{tgi_bs}\"\n",
|
275 |
+
" try:\n",
|
276 |
+
" endpoint = get_inference_endpoint(name, namespace=NAMESPACE)\n",
|
277 |
+
" except:\n",
|
278 |
+
" endpoint = create_endpoint(MAX_BATCH_SIZE=tgi_bs, name=name, instance_type=INSTANCE_TYPE) \n",
|
279 |
+
" pass\n",
|
280 |
" endpoint.wait()\n",
|
281 |
" tqdm.write(f\"Endpoint Created: {name}\")\n",
|
282 |
" max_batch_size = find_max_working_batch_size(endpoint=endpoint, tgi_bs=tgi_bs)\n",
|
|
|
287 |
{
|
288 |
"cell_type": "code",
|
289 |
"execution_count": null,
|
290 |
+
"id": "70a5f441-3da7-4888-9943-112750681067",
|
291 |
"metadata": {},
|
292 |
"outputs": [],
|
293 |
"source": []
|