--- language: - en license: apache-2.0 tags: - mistral - instruct - finetune - chatml - gpt4 - synthetic data - distillation - dpo - rlhf datasets: - Intel/orca_dpo_pairs base_model: teknium/OpenHermes-2.5-Mistral-7B --- ### Credits: Maxime Labonne https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac (With minor alterations) # NeuralHermes 2.5 - Mistral 7B NeuralHermes is based on the [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B) model that has been further fine-tuned with Direct Preference Optimization (DPO) using the [Intel/orca_dpo_pairs](https://huggingface.co./datasets/Intel/orca_dpo_pairs) dataset. . ## Usage You can run this model using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ## Training hyperparameters **LoRA**: * r=16 * lora_alpha=16 * lora_dropout=0.05 * bias="none" * task_type="CAUSAL_LM" * target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] **Training arguments**: * per_device_train_batch_size=2 # Changed from 4 * gradient_accumulation_steps=4 * gradient_checkpointing=True * learning_rate=2e-5 # Changed from 5e-5 * lr_scheduler_type="cosine" * max_steps=250 # Changed from 200 * optim="paged_adamw_32bit" * warmup_steps=100 **DPOTrainer**: * beta=0.1 * max_prompt_length=1024 * max_length=1536