|
import streamlit as st
|
|
import torch
|
|
from transformers import AlbertTokenizer, AlbertForSequenceClassification, AlbertConfig
|
|
import plotly.graph_objects as go
|
|
|
|
|
|
logo_url = "https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png"
|
|
|
|
|
|
st.logo(logo_url, link="https://dejan.ai")
|
|
|
|
|
|
st.title("Search Query Form Classifier")
|
|
st.write("Ambiguous search queries are candidates for query expansion. Our model identifies such queries with an 80 percent accuracy and is deployed in a batch processing pipeline directly connected with Google Search Console API. In this demo you can test the model capability by testing individual queries.")
|
|
st.write("Enter a query to check if it's well-formed:")
|
|
|
|
|
|
model_name = 'dejanseo/Query-Quality-Classifier'
|
|
tokenizer = AlbertTokenizer.from_pretrained(model_name)
|
|
model = AlbertForSequenceClassification.from_pretrained(model_name)
|
|
|
|
|
|
model.eval()
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
model.to(device)
|
|
|
|
|
|
user_input = st.text_input("Query:", "What is?")
|
|
st.write("Developed by [Dejan AI](https://dejan.ai/blog/search-query-quality-classifier/)")
|
|
|
|
def classify_query(query):
|
|
|
|
inputs = tokenizer.encode_plus(
|
|
query,
|
|
add_special_tokens=True,
|
|
max_length=32,
|
|
padding='max_length',
|
|
truncation=True,
|
|
return_attention_mask=True,
|
|
return_tensors='pt'
|
|
)
|
|
|
|
input_ids = inputs['input_ids'].to(device)
|
|
attention_mask = inputs['attention_mask'].to(device)
|
|
|
|
|
|
with torch.no_grad():
|
|
outputs = model(input_ids, attention_mask=attention_mask)
|
|
logits = outputs.logits
|
|
softmax_scores = torch.softmax(logits, dim=1).cpu().numpy()[0]
|
|
confidence = softmax_scores[1] * 100
|
|
|
|
return confidence
|
|
|
|
|
|
if user_input:
|
|
confidence = classify_query(user_input)
|
|
|
|
|
|
fig = go.Figure(go.Indicator(
|
|
mode="gauge+number",
|
|
value=confidence,
|
|
title={'text': "Well-formedness Confidence"},
|
|
gauge={
|
|
'axis': {'range': [0, 100]},
|
|
'bar': {'color': "darkblue"},
|
|
'steps': [
|
|
{'range': [0, 50], 'color': "red"},
|
|
{'range': [50, 100], 'color': "green"}
|
|
],
|
|
'threshold': {
|
|
'line': {'color': "black", 'width': 4},
|
|
'thickness': 0.75,
|
|
'value': confidence
|
|
}
|
|
}
|
|
))
|
|
|
|
st.plotly_chart(fig)
|
|
|
|
if confidence >= 50:
|
|
st.success(f"The query is likely well-formed with {confidence:.2f}% confidence.")
|
|
else:
|
|
st.error(f"The query is likely not well-formed with {100 - confidence:.2f}% confidence.")
|
|
|