---
license: other
license_name: deepseek
license_link: LICENSE
model-index:
- name: deepseek-llm-7b-chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.8
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 79.38
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.75
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 47.98
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.82
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-7b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.55
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=deepseek-ai/deepseek-llm-7b-chat
name: Open LLM Leaderboard
---
[š Homepage] | [š¤ Chat with DeepSeek LLM] | [Discord] | [Wechat(å¾®äæ”)]
### 1. Introduction of Deepseek LLM
Introducing DeepSeek LLM, an advanced language model comprising 7 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community.
### 2. Model Summary
`deepseek-llm-7b-chat` is a 7B parameter model initialized from `deepseek-llm-7b-base` and fine-tuned on extra instruction data.
- **Home Page:** [DeepSeek](https://deepseek.com/)
- **Repository:** [deepseek-ai/deepseek-LLM](https://github.com/deepseek-ai/deepseek-LLM)
- **Chat With DeepSeek LLM:** [DeepSeek-LLM](https://chat.deepseek.com/)
### 3. How to Use
Here give some examples of how to use our model.
#### Chat Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/deepseek-llm-7b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
messages = [
{"role": "user", "content": "Who are you?"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
```
Avoiding the use of the provided function `apply_chat_template`, you can also interact with our model following the sample template. Note that `messages` should be replaced by your input.
```
User: {messages[0]['content']}
Assistant: {messages[1]['content']}<ļ½endāofāsentenceļ½>User: {messages[2]['content']}
Assistant:
```
**Note:** By default (`add_special_tokens=True`), our tokenizer automatically adds a `bos_token` (`<ļ½begināofāsentenceļ½>`) before the input text. Additionally, since the system prompt is not compatible with this version of our models, we DO NOT RECOMMEND including the system prompt in your input.
### 4. License
This code repository is licensed under the MIT License. The use of DeepSeek LLM models is subject to the Model License. DeepSeek LLM supports commercial use.
See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-LLM/blob/main/LICENSE-MODEL) for more details.
### 5. Contact
If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_deepseek-ai__deepseek-llm-7b-chat)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.38|
|AI2 Reasoning Challenge (25-Shot)|55.80|
|HellaSwag (10-Shot) |79.38|
|MMLU (5-Shot) |51.75|
|TruthfulQA (0-shot) |47.98|
|Winogrande (5-shot) |74.82|
|GSM8k (5-shot) |46.55|