import future import builtins import past import six import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.autograd import components as comp from torch.distributions import multinomial, categorical import math import numpy as np try: from . import helpers as h from . import ai from . import scheduling as S except: import helpers as h import ai import scheduling as S class WrapDom(object): def __init__(self, a): self.a = eval(a) if type(a) is str else a def box(self, *args, **kargs): return self.Domain(self.a.box(*args, **kargs)) def boxBetween(self, *args, **kargs): return self.Domain(self.a.boxBetween(*args, **kargs)) def line(self, *args, **kargs): return self.Domain(self.a.line(*args, **kargs)) class DList(object): Domain = ai.ListDomain class MLoss(): def __init__(self, aw): self.aw = aw def loss(self, dom, *args, lr = 1, **kargs): if self.aw <= 0.0: return 0 return self.aw * dom.loss(*args, lr = lr * self.aw, **kargs) def __init__(self, *al): if len(al) == 0: al = [("Point()", 1.0), ("Box()", 0.1)] self.al = [(eval(a) if type(a) is str else a, S.Const.initConst(aw)) for a,aw in al] def getDiv(self, **kargs): return 1.0 / sum(aw.getVal(**kargs) for _,aw in self.al) def box(self, *args, **kargs): m = self.getDiv(**kargs) return self.Domain(ai.TaggedDomain(a.box(*args, **kargs), DList.MLoss(aw.getVal(**kargs) * m)) for a,aw in self.al) def boxBetween(self, *args, **kargs): m = self.getDiv(**kargs) return self.Domain(ai.TaggedDomain(a.boxBetween(*args, **kargs), DList.MLoss(aw.getVal(**kargs) * m)) for a,aw in self.al) def line(self, *args, **kargs): m = self.getDiv(**kargs) return self.Domain(ai.TaggedDomain(a.line(*args, **kargs), DList.MLoss(aw.getVal(**kargs) * m)) for a,aw in self.al) def __str__(self): return "DList(%s)" % h.sumStr("("+str(a)+","+str(w)+")" for a,w in self.al) class Mix(DList): def __init__(self, a="Point()", b="Box()", aw = 1.0, bw = 0.1): super(Mix, self).__init__((a,aw), (b,bw)) class LinMix(DList): def __init__(self, a="Point()", b="Box()", bw = 0.1): super(LinMix, self).__init__((a,S.Complement(bw)), (b,bw)) class DProb(object): def __init__(self, *doms): if len(doms) == 0: doms = [("Point()", 0.8), ("Box()", 0.2)] div = 1.0 / sum(float(aw) for _,aw in doms) self.domains = [eval(a) if type(a) is str else a for a,_ in doms] self.probs = [ div * float(aw) for _,aw in doms] def chooseDom(self): return self.domains[np.random.choice(len(self.domains), p = self.probs)] if len(self.domains) > 1 else self.domains[0] def box(self, *args, **kargs): domain = self.chooseDom() return domain.box(*args, **kargs) def line(self, *args, **kargs): domain = self.chooseDom() return domain.line(*args, **kargs) def __str__(self): return "DProb(%s)" % h.sumStr("("+str(a)+","+str(w)+")" for a,w in zip(self.domains, self.probs)) class Coin(DProb): def __init__(self, a="Point()", b="Box()", ap = 0.8, bp = 0.2): super(Coin, self).__init__((a,ap), (b,bp)) class Point(object): Domain = h.dten def __init__(self, **kargs): pass def box(self, original, *args, **kargs): return original def line(self, original, other, *args, **kargs): return (original + other) / 2 def boxBetween(self, o1, o2, *args, **kargs): return (o1 + o2) / 2 def __str__(self): return "Point()" class PointA(Point): def boxBetween(self, o1, o2, *args, **kargs): return o1 def __str__(self): return "PointA()" class PointB(Point): def boxBetween(self, o1, o2, *args, **kargs): return o2 def __str__(self): return "PointB()" class NormalPoint(Point): def __init__(self, w = None, **kargs): self.epsilon = w def box(self, original, w, *args, **kargs): """ original = mu = mean, epsilon = variance""" if not self.epsilon is None: w = self.epsilon inter = torch.randn_like(original, device = h.device) * w return original + inter def __str__(self): return "NormalPoint(%s)" % ("" if self.epsilon is None else str(self.epsilon)) class MI_FGSM(Point): def __init__(self, w = None, r = 20.0, k = 100, mu = 0.8, should_end = True, restart = None, searchable=False,**kargs): self.epsilon = S.Const.initConst(w) self.k = k self.mu = mu self.r = float(r) self.should_end = should_end self.restart = restart self.searchable = searchable def box(self, original, model, target = None, untargeted = False, **kargs): if target is None: untargeted = True with torch.no_grad(): target = model(original).max(1)[1] return self.attack(model, original, untargeted, target, **kargs) def boxBetween(self, o1, o2, model, target = None, *args, **kargs): return self.attack(model, (o1 - o2).abs() / 2, (o1 + o2) / 2, target, **kargs) def attack(self, model, xo, untargeted, target, w, loss_function=ai.stdLoss, **kargs): w = self.epsilon.getVal(c = w, **kargs) x = nn.Parameter(xo.clone(), requires_grad=True) gradorg = h.zeros(x.shape) is_eq = 1 w = h.ones(x.shape) * w for i in range(self.k): if self.restart is not None and i % int(self.k / self.restart) == 0: x = is_eq * (torch.rand_like(xo) * w + xo) + (1 - is_eq) * x x = nn.Parameter(x, requires_grad = True) model.optimizer.zero_grad() out = model(x).vanillaTensorPart() loss = loss_function(out, target) loss.sum().backward(retain_graph=True) with torch.no_grad(): oth = x.grad / torch.norm(x.grad, p=1) gradorg *= self.mu gradorg += oth grad = (self.r * w / self.k) * ai.mysign(gradorg) if self.should_end: is_eq = ai.mulIfEq(grad, out, target) x = (x + grad * is_eq) if untargeted else (x - grad * is_eq) x = xo + torch.min(torch.max(x - xo, -w),w) x.requires_grad_() model.optimizer.zero_grad() return x def boxBetween(self, o1, o2, model, target, *args, **kargs): raise "Not boxBetween is not yet supported by MI_FGSM" def __str__(self): return "MI_FGSM(%s)" % (("" if self.epsilon is None else "w="+str(self.epsilon)+",") + ("" if self.k == 5 else "k="+str(self.k)+",") + ("" if self.r == 5.0 else "r="+str(self.r)+",") + ("" if self.mu == 0.8 else "r="+str(self.mu)+",") + ("" if self.should_end else "should_end=False")) class PGD(MI_FGSM): def __init__(self, r = 5.0, k = 5, **kargs): super(PGD,self).__init__(r=r, k = k, mu = 0, **kargs) def __str__(self): return "PGD(%s)" % (("" if self.epsilon is None else "w="+str(self.epsilon)+",") + ("" if self.k == 5 else "k="+str(self.k)+",") + ("" if self.r == 5.0 else "r="+str(self.r)+",") + ("" if self.should_end else "should_end=False")) class IFGSM(PGD): def __init__(self, k = 5, **kargs): super(IFGSM, self).__init__(r = 1, k=k, **kargs) def __str__(self): return "IFGSM(%s)" % (("" if self.epsilon is None else "w="+str(self.epsilon)+",") + ("" if self.k == 5 else "k="+str(self.k)+",") + ("" if self.should_end else "should_end=False")) class NormalAdv(Point): def __init__(self, a="IFGSM()", w = None): self.a = (eval(a) if type(a) is str else a) self.epsilon = S.Const.initConst(w) def box(self, original, w, *args, **kargs): epsilon = self.epsilon.getVal(c = w, shape = original.shape[:1], **kargs) assert (0 <= h.dten(epsilon)).all() epsilon = torch.randn(original.size()[0:1], device = h.device)[0] * epsilon return self.a.box(original, w = epsilon, *args, **kargs) def __str__(self): return "NormalAdv(%s)" % ( str(self.a) + ("" if self.epsilon is None else ",w="+str(self.epsilon))) class InclusionSample(Point): def __init__(self, sub, a="Box()", normal = False, w = None, **kargs): self.sub = S.Const.initConst(sub) # sub is the fraction of w to use. self.w = S.Const.initConst(w) self.normal = normal self.a = (eval(a) if type(a) is str else a) def box(self, original, w, *args, **kargs): w = self.w.getVal(c = w, shape = original.shape[:1], **kargs) sub = self.sub.getVal(c = 1, shape = original.shape[:1], **kargs) assert (0 <= h.dten(w)).all() assert (h.dten(sub) <= 1).all() assert (0 <= h.dten(sub)).all() if self.normal: inter = torch.randn_like(original, device = h.device) else: inter = (torch.rand_like(original, device = h.device) * 2 - 1) inter = inter * w * (1 - sub) return self.a.box(original + inter, w = w * sub, *args, **kargs) def boxBetween(self, o1, o2, *args, **kargs): w = (o2 - o1).abs() return self.box( (o2 + o1)/2 , w = w, *args, **kargs) def __str__(self): return "InclusionSample(%s, %s)" % (str(self.sub), str(self.a) + ("" if self.epsilon is None else ",w="+str(self.epsilon))) InSamp = InclusionSample class AdvInclusion(InclusionSample): def __init__(self, sub, a="IFGSM()", b="Box()", w = None, **kargs): self.sub = S.Const.initConst(sub) # sub is the fraction of w to use. self.w = S.Const.initConst(w) self.a = (eval(a) if type(a) is str else a) self.b = (eval(b) if type(b) is str else b) def box(self, original, w, *args, **kargs): w = self.w.getVal(c = w, shape = original.shape, **kargs) sub = self.sub.getVal(c = 1, shape = original.shape, **kargs) assert (0 <= h.dten(w)).all() assert (h.dten(sub) <= 1).all() assert (0 <= h.dten(sub)).all() if h.dten(w).sum().item() <= 0.0: inter = original else: inter = self.a.box(original, w = w * (1 - sub), *args, **kargs) return self.b.box(inter, w = w * sub, *args, **kargs) def __str__(self): return "AdvInclusion(%s, %s, %s)" % (str(self.sub), str(self.a), str(self.b) + ("" if self.epsilon is None else ",w="+str(self.epsilon))) class AdvDom(Point): def __init__(self, a="IFGSM()", b="Box()"): self.a = (eval(a) if type(a) is str else a) self.b = (eval(b) if type(b) is str else b) def box(self, original,*args, **kargs): adv = self.a.box(original, *args, **kargs) return self.b.boxBetween(original, adv.ub(), *args, **kargs) def boxBetween(self, o1, o2, *args, **kargs): original = (o1 + o2) / 2 adv = self.a.boxBetween(o1, o2, *args, **kargs) return self.b.boxBetween(original, adv.ub(), *args, **kargs) def __str__(self): return "AdvDom(%s)" % (("" if self.width is None else "width="+str(self.width)+",") + str(self.a) + "," + str(self.b)) class BiAdv(AdvDom): def box(self, original, **kargs): adv = self.a.box(original, **kargs) extreme = (adv.ub() - original).abs() return self.b.boxBetween(original - extreme, original + extreme, **kargs) def boxBetween(self, o1, o2, *args, **kargs): original = (o1 + o2) / 2 adv = self.a.boxBetween(o1, o2, *args, **kargs) extreme = (adv.ub() - original).abs() return self.b.boxBetween(original - extreme, original + extreme, *args, **kargs) def __str__(self): return "BiAdv" + AdvDom.__str__(self)[6:] class HBox(object): Domain = ai.HybridZonotope def domain(self, *args, **kargs): return ai.TaggedDomain(self.Domain(*args, **kargs), self) def __init__(self, w = None, tot_weight = 1, width_weight = 0, pow_loss = None, log_loss = False, searchable = True, cross_loss = True, **kargs): self.w = S.Const.initConst(w) self.tot_weight = S.Const.initConst(tot_weight) self.width_weight = S.Const.initConst(width_weight) self.pow_loss = pow_loss self.searchable = searchable self.log_loss = log_loss self.cross_loss = cross_loss def __str__(self): return "HBox(%s)" % ("" if self.w is None else "w="+str(self.w)) def boxBetween(self, o1, o2, *args, **kargs): batches = o1.size()[0] num_elem = h.product(o1.size()[1:]) ei = h.getEi(batches, num_elem) if len(o1.size()) > 2: ei = ei.contiguous().view(num_elem, *o1.size()) return self.domain((o1 + o2) / 2, None, ei * (o2 - o1).abs() / 2).checkSizes() def box(self, original, w, **kargs): """ This version of it is slow, but keeps correlation down the line. """ radius = self.w.getVal(c = w, **kargs) batches = original.size()[0] num_elem = h.product(original.size()[1:]) ei = h.getEi(batches,num_elem) if len(original.size()) > 2: ei = ei.contiguous().view(num_elem, *original.size()) return self.domain(original, None, ei * radius).checkSizes() def line(self, o1, o2, **kargs): w = self.w.getVal(c = 0, **kargs) ln = ((o2 - o1) / 2).unsqueeze(0) if not w is None and w > 0.0: batches = o1.size()[0] num_elem = h.product(o1.size()[1:]) ei = h.getEi(batches,num_elem) if len(o1.size()) > 2: ei = ei.contiguous().view(num_elem, *o1.size()) ln = torch.cat([ln, ei * w]) return self.domain((o1 + o2) / 2, None, ln ).checkSizes() def loss(self, dom, target, *args, **kargs): width_weight = self.width_weight.getVal(**kargs) tot_weight = self.tot_weight.getVal(**kargs) if self.cross_loss: r = dom.ub() inds = torch.arange(r.shape[0], device=h.device, dtype=h.ltype) r[inds,target] = dom.lb()[inds,target] tot = r.loss(target, *args, **kargs) else: tot = dom.loss(target, *args, **kargs) if self.log_loss: tot = (tot + 1).log() if self.pow_loss is not None and self.pow_loss > 0 and self.pow_loss != 1: tot = tot.pow(self.pow_loss) ls = tot * tot_weight if width_weight > 0: ls += dom.diameter() * width_weight return ls / (width_weight + tot_weight) class Box(HBox): def __str__(self): return "Box(%s)" % ("" if self.w is None else "w="+str(self.w)) def box(self, original, w, **kargs): """ This version of it takes advantage of betas being uncorrelated. Unfortunately they stay uncorrelated forever. Counterintuitively, tests show more accuracy - this is because the other box creates lots of 0 errors which get accounted for by the calcultion of the newhead in relu which is apparently worse than not accounting for errors. """ radius = self.w.getVal(c = w, **kargs) return self.domain(original, h.ones(original.size()) * radius, None).checkSizes() def line(self, o1, o2, **kargs): w = self.w.getVal(c = 0, **kargs) return self.domain((o1 + o2) / 2, ((o2 - o1) / 2).abs() + h.ones(o2.size()) * w, None).checkSizes() def boxBetween(self, o1, o2, *args, **kargs): return self.line(o1, o2, **kargs) class ZBox(HBox): def __str__(self): return "ZBox(%s)" % ("" if self.w is None else "w="+str(self.w)) def Domain(self, *args, **kargs): return ai.Zonotope(*args, **kargs) class HSwitch(HBox): def __str__(self): return "HSwitch(%s)" % ("" if self.w is None else "w="+str(self.w)) def Domain(self, *args, **kargs): return ai.HybridZonotope(*args, customRelu = ai.creluSwitch, **kargs) class ZSwitch(ZBox): def __str__(self): return "ZSwitch(%s)" % ("" if self.w is None else "w="+str(self.w)) def Domain(self, *args, **kargs): return ai.Zonotope(*args, customRelu = ai.creluSwitch, **kargs) class ZNIPS(ZBox): def __str__(self): return "ZSwitch(%s)" % ("" if self.w is None else "w="+str(self.w)) def Domain(self, *args, **kargs): return ai.Zonotope(*args, customRelu = ai.creluNIPS, **kargs) class HSmooth(HBox): def __str__(self): return "HSmooth(%s)" % ("" if self.w is None else "w="+str(self.w)) def Domain(self, *args, **kargs): return ai.HybridZonotope(*args, customRelu = ai.creluSmooth, **kargs) class HNIPS(HBox): def __str__(self): return "HSmooth(%s)" % ("" if self.w is None else "w="+str(self.w)) def Domain(self, *args, **kargs): return ai.HybridZonotope(*args, customRelu = ai.creluNIPS, **kargs) class ZSmooth(ZBox): def __str__(self): return "ZSmooth(%s)" % ("" if self.w is None else "w="+str(self.w)) def Domain(self, *args, **kargs): return ai.Zonotope(*args, customRelu = ai.creluSmooth, **kargs) # stochastic correlation class HRand(WrapDom): # domain must be an ai style domain like hybrid zonotope. def __init__(self, num_correlated, a = "HSwitch()", **kargs): super(HRand, self).__init__(Box()) self.num_correlated = num_correlated self.dom = eval(a) if type(a) is str else a def Domain(self, d): with torch.no_grad(): out = d.abstractApplyLeaf('stochasticCorrelate', self.num_correlated) out = self.dom.Domain(out.head, out.beta, out.errors) return out def __str__(self): return "HRand(%s, domain = %s)" % (str(self.num_correlated), str(self.a))