File size: 15,083 Bytes
4fb0bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from collections import defaultdict
import json
import os
import random
import logging
import time
import torch
import torch.nn as nn
import numpy as np
from transformers import BertTokenizer, AutoTokenizer, AdamW, get_linear_schedule_with_warmup

from utils.argparse import ConfigurationParer
from utils.prediction_outputs import print_predictions_for_joint_decoding
from utils.eval import eval_file
from inputs.vocabulary import Vocabulary
from inputs.fields.token_field import TokenField
from inputs.fields.raw_token_field import RawTokenField
from inputs.fields.map_token_field import MapTokenField
from inputs.instance import Instance
from inputs.datasets.dataset import Dataset
from inputs.dataset_readers.oie4_reader_for_table_decoding import OIE4ReaderForJointDecoding
from models.joint_decoding.table_decoder import EntRelJointDecoder
from utils.nn_utils import get_n_trainable_parameters

logger = logging.getLogger(__name__)


def step(model, batch_inputs, device):
    batch_inputs["tokens"] = torch.LongTensor(batch_inputs["tokens"])
    batch_inputs["joint_label_matrix"] = torch.LongTensor(batch_inputs["joint_label_matrix"])
    batch_inputs["joint_label_matrix_mask"] = torch.BoolTensor(batch_inputs["joint_label_matrix_mask"])
    batch_inputs["wordpiece_tokens"] = torch.LongTensor(batch_inputs["wordpiece_tokens"])
    batch_inputs["wordpiece_tokens_index"] = torch.LongTensor(batch_inputs["wordpiece_tokens_index"])
    batch_inputs["wordpiece_segment_ids"] = torch.LongTensor(batch_inputs["wordpiece_segment_ids"])

    if device > -1:
        batch_inputs["tokens"] = batch_inputs["tokens"].cuda(device=device, non_blocking=True)
        batch_inputs["joint_label_matrix"] = batch_inputs["joint_label_matrix"].cuda(device=device, non_blocking=True)
        batch_inputs["joint_label_matrix_mask"] = batch_inputs["joint_label_matrix_mask"].cuda(device=device,
                                                                                               non_blocking=True)
        batch_inputs["wordpiece_tokens"] = batch_inputs["wordpiece_tokens"].cuda(device=device, non_blocking=True)
        batch_inputs["wordpiece_tokens_index"] = batch_inputs["wordpiece_tokens_index"].cuda(device=device,
                                                                                             non_blocking=True)
        batch_inputs["wordpiece_segment_ids"] = batch_inputs["wordpiece_segment_ids"].cuda(device=device,
                                                                                           non_blocking=True)

    outputs = model(batch_inputs)
    batch_outputs = []
    if not model.training:
        for sent_idx in range(len(batch_inputs['tokens_lens'])):
            sent_output = dict()
            sent_output['tokens'] = batch_inputs['tokens'][sent_idx].cpu().numpy()
            sent_output['span2ent'] = batch_inputs['span2ent'][sent_idx]
            sent_output['span2rel'] = batch_inputs['span2rel'][sent_idx]
            sent_output['seq_len'] = batch_inputs['tokens_lens'][sent_idx]
            sent_output['joint_label_matrix'] = batch_inputs['joint_label_matrix'][sent_idx].cpu().numpy()
            sent_output['joint_label_preds'] = outputs['joint_label_preds'][sent_idx].cpu().numpy()
            sent_output['separate_positions'] = batch_inputs['separate_positions'][sent_idx]
            sent_output['all_separate_position_preds'] = outputs['all_separate_position_preds'][sent_idx]
            sent_output['all_ent_preds'] = outputs['all_ent_preds'][sent_idx]
            sent_output['all_rel_preds'] = outputs['all_rel_preds'][sent_idx]
            batch_outputs.append(sent_output)
        return batch_outputs

    return outputs['element_loss'], outputs['symmetric_loss'], outputs['implication_loss'], outputs['triple_loss']


def train(cfg, dataset, model):
    logger.info("Training starting...")

    for name, param in model.named_parameters():
        logger.info("{!r}: size: {} requires_grad: {}.".format(name, param.size(), param.requires_grad))

    logger.info("Trainable parameters size: {}.".format(get_n_trainable_parameters(model)))

    parameters = [(name, param) for name, param in model.named_parameters() if param.requires_grad]
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    bert_layer_lr = {}
    base_lr = cfg.bert_learning_rate
    for i in range(11, -1, -1):
        bert_layer_lr['.' + str(i) + '.'] = base_lr
        base_lr *= cfg.lr_decay_rate

    optimizer_grouped_parameters = []
    for name, param in parameters:
        params = {'params': [param], 'lr': cfg.learning_rate}
        if any(item in name for item in no_decay):
            params['weight_decay_rate'] = 0.0
        else:
            if 'bert' in name:
                params['weight_decay_rate'] = cfg.adam_bert_weight_decay_rate
            else:
                params['weight_decay_rate'] = cfg.adam_weight_decay_rate

        for bert_layer_name, lr in bert_layer_lr.items():
            if bert_layer_name in name:
                params['lr'] = lr
                break

        optimizer_grouped_parameters.append(params)

    optimizer = AdamW(optimizer_grouped_parameters,
                      betas=(cfg.adam_beta1, cfg.adam_beta2),
                      lr=cfg.learning_rate,
                      eps=cfg.adam_epsilon,
                      weight_decay=cfg.adam_weight_decay_rate,
                      correct_bias=False)

    total_train_steps = (dataset.get_dataset_size("train") + cfg.train_batch_size * cfg.gradient_accumulation_steps -
                         1) / (cfg.train_batch_size * cfg.gradient_accumulation_steps) * cfg.epochs
    num_warmup_steps = int(cfg.warmup_rate * total_train_steps) + 1
    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=num_warmup_steps,
                                                num_training_steps=total_train_steps)

    last_epoch = 1
    batch_id = 0
    best_f1 = 0.0
    early_stop_cnt = 0
    accumulation_steps = 0
    model.zero_grad()

    for epoch, batch in dataset.get_batch('train', cfg.train_batch_size, None):

        if last_epoch != epoch or (batch_id != 0 and batch_id % cfg.validate_every == 0):
            if accumulation_steps != 0:
                optimizer.step()
                scheduler.step()
                model.zero_grad()
            if epoch % cfg.pretrain_epochs == 0:
                dev_f1 = dev(cfg, dataset, model)
                if dev_f1 > best_f1:
                    early_stop_cnt = 0
                    best_f1 = dev_f1
                    logger.info("Save model...")
                    torch.save(model.state_dict(), open(cfg.constituent_model_path, "wb"))
                elif last_epoch != epoch:
                    early_stop_cnt += 1
                    if early_stop_cnt > cfg.early_stop:
                        logger.info("Early Stop: best F1 score: {:6.2f}%".format(100 * best_f1))
                        break
        if epoch > cfg.epochs:
            torch.save(model.state_dict(), open(cfg.last_model_path, "wb"))
            logger.info("Training Stop: best F1 score: {:6.2f}%".format(100 * best_f1))
            break

        if last_epoch != epoch:
            batch_id = 0
            last_epoch = epoch

        model.train()
        batch_id += len(batch['tokens_lens'])
        batch['epoch'] = (epoch - 1)
        element_loss, symmetric_loss, implication_loss, triple_loss = step(model, batch, cfg.device)
        loss = 1.0 * element_loss + 1.0 * symmetric_loss + 1.0 * implication_loss + 1.0 * triple_loss
        if batch_id % cfg.logging_steps == 0:
            logger.info(
                "Epoch: {} Batch: {} Loss: {} (Element_loss: {} Symmetric_loss: {} Implication_loss: {} Triple_loss: {})"
                .format(epoch, batch_id, loss.item(), element_loss.item(), symmetric_loss.item(),
                        implication_loss.item(), triple_loss.item()))

        if cfg.gradient_accumulation_steps > 1:
            loss /= cfg.gradient_accumulation_steps

        loss.backward()

        accumulation_steps = (accumulation_steps + 1) % cfg.gradient_accumulation_steps
        if accumulation_steps == 0:
            nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=cfg.gradient_clipping)
            optimizer.step()
            scheduler.step()
            model.zero_grad()

    state_dict = torch.load(open(cfg.best_model_path, "rb"), map_location=lambda storage, loc: storage)
    model.load_state_dict(state_dict)
    test(cfg, dataset, model)


def dev(cfg, dataset, model):
    logger.info("Validate starting...")
    model.zero_grad()

    all_outputs = []
    cost_time = 0
    for _, batch in dataset.get_batch('dev', cfg.test_batch_size, None):
        model.eval()
        with torch.no_grad():
            cost_time -= time.time()
            batch_outpus = step(model, batch, cfg.device)
            cost_time += time.time()
        all_outputs.extend(batch_outpus)
    logger.info(f"Cost time: {cost_time}s")
    dev_output_file = os.path.join(cfg.constituent_model_dir, "dev.output")
    print_predictions_for_joint_decoding(all_outputs, dev_output_file, dataset.vocab)
    eval_metrics = ['joint-label', 'separate-position', 'ent', 'exact-rel']
    joint_label_score, separate_position_score, ent_score, exact_rel_score = eval_file(dev_output_file, eval_metrics)
    return ent_score + exact_rel_score


def test(cfg, dataset, model):
    logger.info("Testing starting...")
    model.zero_grad()

    all_outputs = []

    cost_time = 0
    for _, batch in dataset.get_batch('test', cfg.test_batch_size, None):
        model.eval()
        with torch.no_grad():
            cost_time -= time.time()
            batch_outpus = step(model, batch, cfg.device)
            cost_time += time.time()
        all_outputs.extend(batch_outpus)
    logger.info(f"Cost time: {cost_time}s")

    test_output_file = os.path.join(cfg.constituent_model_dir, "test.output")
    print_predictions_for_joint_decoding(all_outputs, test_output_file, dataset.vocab)
    eval_metrics = ['joint-label', 'separate-position', 'ent', 'exact-rel']
    eval_file(test_output_file, eval_metrics)


def main():
    # config settings
    parser = ConfigurationParer()
    parser.add_save_cfgs()
    parser.add_data_cfgs()
    parser.add_model_cfgs()
    parser.add_optimizer_cfgs()
    parser.add_run_cfgs()

    cfg = parser.parse_args()
    logger.info(parser.format_values())

    # set random seed
    random.seed(cfg.seed)
    torch.manual_seed(cfg.seed)
    np.random.seed(cfg.seed)
    if cfg.device > -1 and not torch.cuda.is_available():
        logger.error('config conflicts: no gpu available, use cpu for training.')
        cfg.device = -1
    if cfg.device > -1:
        torch.cuda.manual_seed(cfg.seed)

    # define fields
    tokens = TokenField("tokens", "tokens", "tokens", True)
    separate_positions = RawTokenField("separate_positions", "separate_positions")
    span2ent = MapTokenField("span2ent", "ent_rel_id", "span2ent", False)
    span2rel = MapTokenField("span2rel", "ent_rel_id", "span2rel", False)
    joint_label_matrix = RawTokenField("joint_label_matrix", "joint_label_matrix")
    wordpiece_tokens = TokenField("wordpiece_tokens", "wordpiece", "wordpiece_tokens", False)
    wordpiece_tokens_index = RawTokenField("wordpiece_tokens_index", "wordpiece_tokens_index")
    wordpiece_segment_ids = RawTokenField("wordpiece_segment_ids", "wordpiece_segment_ids")
    fields = [tokens, separate_positions, span2ent, span2rel, joint_label_matrix]

    if cfg.embedding_model in ['bert', 'pretrained']:
        fields.extend([wordpiece_tokens, wordpiece_tokens_index, wordpiece_segment_ids])

    # define counter and vocabulary
    counter = defaultdict(lambda: defaultdict(int))
    vocab = Vocabulary()

    # define instance (data sets)
    train_instance = Instance(fields)
    dev_instance = Instance(fields)
    test_instance = Instance(fields)

    # define dataset reader
    max_len = {'tokens': cfg.max_sent_len, 'wordpiece_tokens': cfg.max_wordpiece_len}
    ent_rel_file = json.load(open(cfg.ent_rel_file, 'r', encoding='utf-8'))
    pretrained_vocab = {'ent_rel_id': ent_rel_file["id"]}
    if cfg.embedding_model == 'bert':
        tokenizer = BertTokenizer.from_pretrained(cfg.bert_model_name)
        logger.info("Load bert tokenizer successfully.")
        pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
    elif cfg.embedding_model == 'pretrained':
        tokenizer = AutoTokenizer.from_pretrained(cfg.pretrained_model_name)
        logger.info("Load {} tokenizer successfully.".format(cfg.pretrained_model_name))
        pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
    ace_train_reader = OIE4ReaderForJointDecoding(cfg.train_file, False, max_len)
    ace_dev_reader = OIE4ReaderForJointDecoding(cfg.dev_file, False, max_len)
    ace_test_reader = OIE4ReaderForJointDecoding(cfg.test_file, False, max_len)

    # define dataset
    ace_dataset = Dataset("OIE4")
    ace_dataset.add_instance("train", train_instance, ace_train_reader, is_count=True, is_train=True)
    ace_dataset.add_instance("dev", dev_instance, ace_dev_reader, is_count=True, is_train=False)
    ace_dataset.add_instance("test", test_instance, ace_test_reader, is_count=True, is_train=False)

    min_count = {"tokens": 1}
    no_pad_namespace = ["ent_rel_id"]
    no_unk_namespace = ["ent_rel_id"]
    contain_pad_namespace = {"wordpiece": tokenizer.pad_token}
    contain_unk_namespace = {"wordpiece": tokenizer.unk_token}
    ace_dataset.build_dataset(vocab=vocab,
                              counter=counter,
                              min_count=min_count,
                              pretrained_vocab=pretrained_vocab,
                              no_pad_namespace=no_pad_namespace,
                              no_unk_namespace=no_unk_namespace,
                              contain_pad_namespace=contain_pad_namespace,
                              contain_unk_namespace=contain_unk_namespace)
    wo_padding_namespace = ["separate_positions", "span2ent", "span2rel"]
    ace_dataset.set_wo_padding_namespace(wo_padding_namespace=wo_padding_namespace)

    if cfg.test:
        vocab = Vocabulary.load(cfg.constituent_vocab)
    else:
        vocab.save(cfg.constituent_vocab)

    # joint model
    model = EntRelJointDecoder(cfg=cfg, vocab=vocab, ent_rel_file=ent_rel_file)

    # test the constituent extraction model
    if cfg.test and os.path.exists(cfg.constituent_model_path):
        state_dict = torch.load(open(cfg.constituent_model_path, 'rb'), map_location=lambda storage, loc: storage)
        model.load_state_dict(state_dict)
        logger.info("Loading best training model {} successfully for testing the constituent model.".format(cfg.constituent_model_path))

    if cfg.device > -1:
        model.cuda(device=cfg.device)

    if cfg.test:
        dev(cfg, ace_dataset, model)
        test(cfg, ace_dataset, model)
    else:
        train(cfg, ace_dataset, model)


if __name__ == '__main__':
    main()