File size: 15,083 Bytes
4fb0bd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from collections import defaultdict
import json
import os
import random
import logging
import time
import torch
import torch.nn as nn
import numpy as np
from transformers import BertTokenizer, AutoTokenizer, AdamW, get_linear_schedule_with_warmup
from utils.argparse import ConfigurationParer
from utils.prediction_outputs import print_predictions_for_joint_decoding
from utils.eval import eval_file
from inputs.vocabulary import Vocabulary
from inputs.fields.token_field import TokenField
from inputs.fields.raw_token_field import RawTokenField
from inputs.fields.map_token_field import MapTokenField
from inputs.instance import Instance
from inputs.datasets.dataset import Dataset
from inputs.dataset_readers.oie4_reader_for_table_decoding import OIE4ReaderForJointDecoding
from models.joint_decoding.table_decoder import EntRelJointDecoder
from utils.nn_utils import get_n_trainable_parameters
logger = logging.getLogger(__name__)
def step(model, batch_inputs, device):
batch_inputs["tokens"] = torch.LongTensor(batch_inputs["tokens"])
batch_inputs["joint_label_matrix"] = torch.LongTensor(batch_inputs["joint_label_matrix"])
batch_inputs["joint_label_matrix_mask"] = torch.BoolTensor(batch_inputs["joint_label_matrix_mask"])
batch_inputs["wordpiece_tokens"] = torch.LongTensor(batch_inputs["wordpiece_tokens"])
batch_inputs["wordpiece_tokens_index"] = torch.LongTensor(batch_inputs["wordpiece_tokens_index"])
batch_inputs["wordpiece_segment_ids"] = torch.LongTensor(batch_inputs["wordpiece_segment_ids"])
if device > -1:
batch_inputs["tokens"] = batch_inputs["tokens"].cuda(device=device, non_blocking=True)
batch_inputs["joint_label_matrix"] = batch_inputs["joint_label_matrix"].cuda(device=device, non_blocking=True)
batch_inputs["joint_label_matrix_mask"] = batch_inputs["joint_label_matrix_mask"].cuda(device=device,
non_blocking=True)
batch_inputs["wordpiece_tokens"] = batch_inputs["wordpiece_tokens"].cuda(device=device, non_blocking=True)
batch_inputs["wordpiece_tokens_index"] = batch_inputs["wordpiece_tokens_index"].cuda(device=device,
non_blocking=True)
batch_inputs["wordpiece_segment_ids"] = batch_inputs["wordpiece_segment_ids"].cuda(device=device,
non_blocking=True)
outputs = model(batch_inputs)
batch_outputs = []
if not model.training:
for sent_idx in range(len(batch_inputs['tokens_lens'])):
sent_output = dict()
sent_output['tokens'] = batch_inputs['tokens'][sent_idx].cpu().numpy()
sent_output['span2ent'] = batch_inputs['span2ent'][sent_idx]
sent_output['span2rel'] = batch_inputs['span2rel'][sent_idx]
sent_output['seq_len'] = batch_inputs['tokens_lens'][sent_idx]
sent_output['joint_label_matrix'] = batch_inputs['joint_label_matrix'][sent_idx].cpu().numpy()
sent_output['joint_label_preds'] = outputs['joint_label_preds'][sent_idx].cpu().numpy()
sent_output['separate_positions'] = batch_inputs['separate_positions'][sent_idx]
sent_output['all_separate_position_preds'] = outputs['all_separate_position_preds'][sent_idx]
sent_output['all_ent_preds'] = outputs['all_ent_preds'][sent_idx]
sent_output['all_rel_preds'] = outputs['all_rel_preds'][sent_idx]
batch_outputs.append(sent_output)
return batch_outputs
return outputs['element_loss'], outputs['symmetric_loss'], outputs['implication_loss'], outputs['triple_loss']
def train(cfg, dataset, model):
logger.info("Training starting...")
for name, param in model.named_parameters():
logger.info("{!r}: size: {} requires_grad: {}.".format(name, param.size(), param.requires_grad))
logger.info("Trainable parameters size: {}.".format(get_n_trainable_parameters(model)))
parameters = [(name, param) for name, param in model.named_parameters() if param.requires_grad]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
bert_layer_lr = {}
base_lr = cfg.bert_learning_rate
for i in range(11, -1, -1):
bert_layer_lr['.' + str(i) + '.'] = base_lr
base_lr *= cfg.lr_decay_rate
optimizer_grouped_parameters = []
for name, param in parameters:
params = {'params': [param], 'lr': cfg.learning_rate}
if any(item in name for item in no_decay):
params['weight_decay_rate'] = 0.0
else:
if 'bert' in name:
params['weight_decay_rate'] = cfg.adam_bert_weight_decay_rate
else:
params['weight_decay_rate'] = cfg.adam_weight_decay_rate
for bert_layer_name, lr in bert_layer_lr.items():
if bert_layer_name in name:
params['lr'] = lr
break
optimizer_grouped_parameters.append(params)
optimizer = AdamW(optimizer_grouped_parameters,
betas=(cfg.adam_beta1, cfg.adam_beta2),
lr=cfg.learning_rate,
eps=cfg.adam_epsilon,
weight_decay=cfg.adam_weight_decay_rate,
correct_bias=False)
total_train_steps = (dataset.get_dataset_size("train") + cfg.train_batch_size * cfg.gradient_accumulation_steps -
1) / (cfg.train_batch_size * cfg.gradient_accumulation_steps) * cfg.epochs
num_warmup_steps = int(cfg.warmup_rate * total_train_steps) + 1
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_train_steps)
last_epoch = 1
batch_id = 0
best_f1 = 0.0
early_stop_cnt = 0
accumulation_steps = 0
model.zero_grad()
for epoch, batch in dataset.get_batch('train', cfg.train_batch_size, None):
if last_epoch != epoch or (batch_id != 0 and batch_id % cfg.validate_every == 0):
if accumulation_steps != 0:
optimizer.step()
scheduler.step()
model.zero_grad()
if epoch % cfg.pretrain_epochs == 0:
dev_f1 = dev(cfg, dataset, model)
if dev_f1 > best_f1:
early_stop_cnt = 0
best_f1 = dev_f1
logger.info("Save model...")
torch.save(model.state_dict(), open(cfg.constituent_model_path, "wb"))
elif last_epoch != epoch:
early_stop_cnt += 1
if early_stop_cnt > cfg.early_stop:
logger.info("Early Stop: best F1 score: {:6.2f}%".format(100 * best_f1))
break
if epoch > cfg.epochs:
torch.save(model.state_dict(), open(cfg.last_model_path, "wb"))
logger.info("Training Stop: best F1 score: {:6.2f}%".format(100 * best_f1))
break
if last_epoch != epoch:
batch_id = 0
last_epoch = epoch
model.train()
batch_id += len(batch['tokens_lens'])
batch['epoch'] = (epoch - 1)
element_loss, symmetric_loss, implication_loss, triple_loss = step(model, batch, cfg.device)
loss = 1.0 * element_loss + 1.0 * symmetric_loss + 1.0 * implication_loss + 1.0 * triple_loss
if batch_id % cfg.logging_steps == 0:
logger.info(
"Epoch: {} Batch: {} Loss: {} (Element_loss: {} Symmetric_loss: {} Implication_loss: {} Triple_loss: {})"
.format(epoch, batch_id, loss.item(), element_loss.item(), symmetric_loss.item(),
implication_loss.item(), triple_loss.item()))
if cfg.gradient_accumulation_steps > 1:
loss /= cfg.gradient_accumulation_steps
loss.backward()
accumulation_steps = (accumulation_steps + 1) % cfg.gradient_accumulation_steps
if accumulation_steps == 0:
nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=cfg.gradient_clipping)
optimizer.step()
scheduler.step()
model.zero_grad()
state_dict = torch.load(open(cfg.best_model_path, "rb"), map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
test(cfg, dataset, model)
def dev(cfg, dataset, model):
logger.info("Validate starting...")
model.zero_grad()
all_outputs = []
cost_time = 0
for _, batch in dataset.get_batch('dev', cfg.test_batch_size, None):
model.eval()
with torch.no_grad():
cost_time -= time.time()
batch_outpus = step(model, batch, cfg.device)
cost_time += time.time()
all_outputs.extend(batch_outpus)
logger.info(f"Cost time: {cost_time}s")
dev_output_file = os.path.join(cfg.constituent_model_dir, "dev.output")
print_predictions_for_joint_decoding(all_outputs, dev_output_file, dataset.vocab)
eval_metrics = ['joint-label', 'separate-position', 'ent', 'exact-rel']
joint_label_score, separate_position_score, ent_score, exact_rel_score = eval_file(dev_output_file, eval_metrics)
return ent_score + exact_rel_score
def test(cfg, dataset, model):
logger.info("Testing starting...")
model.zero_grad()
all_outputs = []
cost_time = 0
for _, batch in dataset.get_batch('test', cfg.test_batch_size, None):
model.eval()
with torch.no_grad():
cost_time -= time.time()
batch_outpus = step(model, batch, cfg.device)
cost_time += time.time()
all_outputs.extend(batch_outpus)
logger.info(f"Cost time: {cost_time}s")
test_output_file = os.path.join(cfg.constituent_model_dir, "test.output")
print_predictions_for_joint_decoding(all_outputs, test_output_file, dataset.vocab)
eval_metrics = ['joint-label', 'separate-position', 'ent', 'exact-rel']
eval_file(test_output_file, eval_metrics)
def main():
# config settings
parser = ConfigurationParer()
parser.add_save_cfgs()
parser.add_data_cfgs()
parser.add_model_cfgs()
parser.add_optimizer_cfgs()
parser.add_run_cfgs()
cfg = parser.parse_args()
logger.info(parser.format_values())
# set random seed
random.seed(cfg.seed)
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
if cfg.device > -1 and not torch.cuda.is_available():
logger.error('config conflicts: no gpu available, use cpu for training.')
cfg.device = -1
if cfg.device > -1:
torch.cuda.manual_seed(cfg.seed)
# define fields
tokens = TokenField("tokens", "tokens", "tokens", True)
separate_positions = RawTokenField("separate_positions", "separate_positions")
span2ent = MapTokenField("span2ent", "ent_rel_id", "span2ent", False)
span2rel = MapTokenField("span2rel", "ent_rel_id", "span2rel", False)
joint_label_matrix = RawTokenField("joint_label_matrix", "joint_label_matrix")
wordpiece_tokens = TokenField("wordpiece_tokens", "wordpiece", "wordpiece_tokens", False)
wordpiece_tokens_index = RawTokenField("wordpiece_tokens_index", "wordpiece_tokens_index")
wordpiece_segment_ids = RawTokenField("wordpiece_segment_ids", "wordpiece_segment_ids")
fields = [tokens, separate_positions, span2ent, span2rel, joint_label_matrix]
if cfg.embedding_model in ['bert', 'pretrained']:
fields.extend([wordpiece_tokens, wordpiece_tokens_index, wordpiece_segment_ids])
# define counter and vocabulary
counter = defaultdict(lambda: defaultdict(int))
vocab = Vocabulary()
# define instance (data sets)
train_instance = Instance(fields)
dev_instance = Instance(fields)
test_instance = Instance(fields)
# define dataset reader
max_len = {'tokens': cfg.max_sent_len, 'wordpiece_tokens': cfg.max_wordpiece_len}
ent_rel_file = json.load(open(cfg.ent_rel_file, 'r', encoding='utf-8'))
pretrained_vocab = {'ent_rel_id': ent_rel_file["id"]}
if cfg.embedding_model == 'bert':
tokenizer = BertTokenizer.from_pretrained(cfg.bert_model_name)
logger.info("Load bert tokenizer successfully.")
pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
elif cfg.embedding_model == 'pretrained':
tokenizer = AutoTokenizer.from_pretrained(cfg.pretrained_model_name)
logger.info("Load {} tokenizer successfully.".format(cfg.pretrained_model_name))
pretrained_vocab['wordpiece'] = tokenizer.get_vocab()
ace_train_reader = OIE4ReaderForJointDecoding(cfg.train_file, False, max_len)
ace_dev_reader = OIE4ReaderForJointDecoding(cfg.dev_file, False, max_len)
ace_test_reader = OIE4ReaderForJointDecoding(cfg.test_file, False, max_len)
# define dataset
ace_dataset = Dataset("OIE4")
ace_dataset.add_instance("train", train_instance, ace_train_reader, is_count=True, is_train=True)
ace_dataset.add_instance("dev", dev_instance, ace_dev_reader, is_count=True, is_train=False)
ace_dataset.add_instance("test", test_instance, ace_test_reader, is_count=True, is_train=False)
min_count = {"tokens": 1}
no_pad_namespace = ["ent_rel_id"]
no_unk_namespace = ["ent_rel_id"]
contain_pad_namespace = {"wordpiece": tokenizer.pad_token}
contain_unk_namespace = {"wordpiece": tokenizer.unk_token}
ace_dataset.build_dataset(vocab=vocab,
counter=counter,
min_count=min_count,
pretrained_vocab=pretrained_vocab,
no_pad_namespace=no_pad_namespace,
no_unk_namespace=no_unk_namespace,
contain_pad_namespace=contain_pad_namespace,
contain_unk_namespace=contain_unk_namespace)
wo_padding_namespace = ["separate_positions", "span2ent", "span2rel"]
ace_dataset.set_wo_padding_namespace(wo_padding_namespace=wo_padding_namespace)
if cfg.test:
vocab = Vocabulary.load(cfg.constituent_vocab)
else:
vocab.save(cfg.constituent_vocab)
# joint model
model = EntRelJointDecoder(cfg=cfg, vocab=vocab, ent_rel_file=ent_rel_file)
# test the constituent extraction model
if cfg.test and os.path.exists(cfg.constituent_model_path):
state_dict = torch.load(open(cfg.constituent_model_path, 'rb'), map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
logger.info("Loading best training model {} successfully for testing the constituent model.".format(cfg.constituent_model_path))
if cfg.device > -1:
model.cuda(device=cfg.device)
if cfg.test:
dev(cfg, ace_dataset, model)
test(cfg, ace_dataset, model)
else:
train(cfg, ace_dataset, model)
if __name__ == '__main__':
main()
|