File size: 5,890 Bytes
131a779
 
3cbe552
 
 
 
131a779
3cbe552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: rishiraj/CatPPT-base
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: rishiraj/CatPPT-base
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

model_config:
  output_router_logits: true

datasets:
  - path: teknium/openhermes
    type: alpaca
    prompt_style: chatml
  - path: garage-bAInd/Open-Platypus
    type: alpaca
    prompt_style: chatml
  - path: LDJnr/Capybara
    type: sharegpt
    conversation: chatml
  - path: datasets/samantha-1.1.json
    type: sharegpt
    conversation: chatml
  - path: datasets/grammarly-coedit-alpaca.jsonl
    type: alpaca
    prompt_style: chatml
  - path: datasets/dolphin-coder-codegen.jsonl
    type: alpaca_w_system.load_open_orca_chatml
  - path: datasets/dolphin-coder-translate.jsonl
    type: alpaca_w_system.load_open_orca_chatml
  - path: datasets/data-evol_instruct-decontaminated-alpaca.jsonl
    type: alpaca
    prompt_style: chatml
  - path: datasets/data-oss_instruct-decontaminated-alpaca.jsonl   
    type: alpaca
    prompt_style: chatml
  - path: jondurbin/airoboros-3.2
    type: sharegpt
    conversations: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora-out-2
seed: 420

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 3
num_epochs: 1.5
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 0
evals_per_epoch: 20
eval_table_size:
saves_per_epoch: 20
debug:
deepspeed:
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
  eos_token: "<|im_end|>"
tokens:
  - "<|im_start|>"
trust_remote_code: true

```

</details><br>

# qlora-out-2

This model is a fine-tuned version of [rishiraj/CatPPT-base](https://huggingface.co./rishiraj/CatPPT-base) on multiple datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4258

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 3
- seed: 420
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 18
- total_eval_batch_size: 9
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1.5

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7691        | 0.0   | 1    | 0.7027          |
| 0.5556        | 0.05  | 135  | 0.5808          |
| 0.597         | 0.1   | 270  | 0.5488          |
| 0.5979        | 0.15  | 405  | 0.5277          |
| 0.4693        | 0.2   | 540  | 0.5108          |
| 0.5123        | 0.25  | 675  | 0.4978          |
| 0.4394        | 0.3   | 810  | 0.4883          |
| 0.46          | 0.35  | 945  | 0.4802          |
| 0.4472        | 0.4   | 1080 | 0.4748          |
| 0.47          | 0.45  | 1215 | 0.4687          |
| 0.4249        | 0.5   | 1350 | 0.4637          |
| 0.4823        | 0.55  | 1485 | 0.4599          |
| 0.4209        | 0.6   | 1620 | 0.4555          |
| 0.4909        | 0.65  | 1755 | 0.4517          |
| 0.4663        | 0.7   | 1890 | 0.4470          |
| 0.4215        | 0.75  | 2025 | 0.4437          |
| 0.4267        | 0.8   | 2160 | 0.4398          |
| 0.4109        | 0.85  | 2295 | 0.4364          |
| 0.4099        | 0.9   | 2430 | 0.4331          |
| 0.447         | 0.95  | 2565 | 0.4298          |
| 0.4412        | 1.0   | 2700 | 0.4272          |
| 0.3838        | 1.03  | 2835 | 0.4287          |
| 0.4262        | 1.08  | 2970 | 0.4274          |
| 0.3889        | 1.13  | 3105 | 0.4263          |
| 0.3114        | 1.18  | 3240 | 0.4255          |
| 0.3685        | 1.23  | 3375 | 0.4256          |
| 0.392         | 1.28  | 3510 | 0.4253          |
| 0.3751        | 1.33  | 3645 | 0.4255          |
| 0.3756        | 1.39  | 3780 | 0.4256          |
| 0.3108        | 1.44  | 3915 | 0.4258          |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Framework versions


- PEFT 0.6.0