File size: 5,096 Bytes
d3065b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# ############################################################################
# Model: E2E ASR with Transformer
# Encoder: Conformer Encoder (small)
# Decoder: Transformer Decoder + (CTC/ATT joint) beamsearch + TransformerLM
# Tokens: unigram
# losses: CTC + KLdiv (Label Smoothing loss)
# Training: KsponSpeech 965.2h
# Based on the works of: Jianyuan Zhong, Titouan Parcollet 2021
# Authors: Dong Won Kim, Dongwoo Kim 2021, 2024
# ############################################################################
# Seed needs to be set at top of yaml, before objects with parameters are made
# ############################################################################
# Feature parameters
sample_rate: 16000
n_fft: 512
n_mels: 80
####################### Model parameters ###########################
# Transformer
d_model: 144
nhead: 4
num_encoder_layers: 12
num_decoder_layers: 4
d_ffn: 1024
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 5000
# Outputs
blank_index: 0
label_smoothing: 0.1
pad_index: 0
bos_index: 1
eos_index: 2
# Decoding parameters
min_decode_ratio: 0.0
max_decode_ratio: 1.0
test_beam_size: 66
lm_weight: 0.60
ctc_weight_decode: 0.40
############################## models ################################
CNN: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
input_shape: (8, 10, 80)
num_blocks: 2
num_layers_per_block: 1
out_channels: (64, 32)
kernel_sizes: (3, 3)
strides: (2, 2)
residuals: (False, False)
Transformer: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR # yamllint disable-line rule:line-length
input_size: 640
tgt_vocab: !ref <output_neurons>
d_model: !ref <d_model>
nhead: !ref <nhead>
num_encoder_layers: !ref <num_encoder_layers>
num_decoder_layers: !ref <num_decoder_layers>
d_ffn: !ref <d_ffn>
activation: !ref <activation>
encoder_module: conformer
attention_type: RelPosMHAXL
normalize_before: True
causal: False
ctc_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
seq_lin: !new:speechbrain.nnet.linear.Linear
input_size: !ref <d_model>
n_neurons: !ref <output_neurons>
transformerlm_scorer: !new:speechbrain.decoders.scorer.TransformerLMScorer
language_model: !ref <lm_model>
temperature: 1.15
ctc_scorer: !new:speechbrain.decoders.scorer.CTCScorer
eos_index: !ref <eos_index>
blank_index: !ref <blank_index>
ctc_fc: !ref <ctc_lin>
scorer: !new:speechbrain.decoders.scorer.ScorerBuilder
full_scorers: [!ref <transformerlm_scorer>, !ref <ctc_scorer>]
weights:
transformerlm: !ref <lm_weight>
ctc: !ref <ctc_weight_decode>
decoder: !new:speechbrain.decoders.S2STransformerBeamSearcher
modules: [!ref <Transformer>, !ref <seq_lin>]
bos_index: !ref <bos_index>
eos_index: !ref <eos_index>
min_decode_ratio: !ref <min_decode_ratio>
max_decode_ratio: !ref <max_decode_ratio>
beam_size: !ref <test_beam_size>
temperature: 1.15
using_eos_threshold: False
length_normalization: True
scorer: !ref <scorer>
log_softmax: !new:torch.nn.LogSoftmax
dim: -1
normalizer: !new:speechbrain.processing.features.InputNormalization
norm_type: global
compute_features: !new:speechbrain.lobes.features.Fbank
sample_rate: !ref <sample_rate>
n_fft: !ref <n_fft>
n_mels: !ref <n_mels>
# This is the Transformer LM that is used according to the Huggingface repository
# Visit the HuggingFace model corresponding to the pretrained_lm_tokenizer_path
# For more details about the model!
# NB: It has to match the pre-trained TransformerLM!!
lm_model: !new:speechbrain.lobes.models.transformer.TransformerLM.TransformerLM
vocab: 5000
d_model: 768
nhead: 12
num_encoder_layers: 12
num_decoder_layers: 0
d_ffn: 3072
dropout: 0.0
activation: !name:torch.nn.GELU
normalize_before: False
tokenizer: !new:sentencepiece.SentencePieceProcessor
Tencoder: !new:speechbrain.lobes.models.transformer.TransformerASR.EncoderWrapper
transformer: !ref <Transformer>
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
input_shape: [null, null, !ref <n_mels>]
compute_features: !ref <compute_features>
normalize: !ref <normalizer>
cnn: !ref <CNN>
transformer_encoder: !ref <Tencoder>
# Models
asr_model: !new:torch.nn.ModuleList
- [!ref <CNN>, !ref <Transformer>, !ref <seq_lin>, !ref <ctc_lin>]
modules:
compute_features: !ref <compute_features>
normalizer: !ref <normalizer>
pre_transformer: !ref <CNN>
transformer: !ref <Transformer>
asr_model: !ref <asr_model>
lm_model: !ref <lm_model>
encoder: !ref <encoder>
decoder: !ref <decoder>
# The pretrainer allows a mapping between pretrained files and instances that
# are declared in the yaml.
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
normalizer: !ref <normalizer>
asr: !ref <asr_model>
lm: !ref <lm_model>
tokenizer: !ref <tokenizer>
|