best albert-tiny model finetuned on ner
Browse files- all_results.json +13 -13
- eval_results.json +9 -9
- pytorch_model.bin +1 -1
- train_results.json +5 -5
- trainer_state.json +518 -20
- training_args.bin +1 -1
all_results.json
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 1916,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
-
"train_loss": 0.
|
13 |
-
"train_runtime":
|
14 |
"train_samples": 8324,
|
15 |
-
"train_samples_per_second":
|
16 |
-
"train_steps_per_second":
|
17 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 4.0,
|
3 |
+
"eval_accuracy": 0.9473241942924933,
|
4 |
+
"eval_f1": 0.7241245438310427,
|
5 |
+
"eval_loss": 0.1745937019586563,
|
6 |
+
"eval_precision": 0.7045935327893623,
|
7 |
+
"eval_recall": 0.7447692061970931,
|
8 |
+
"eval_runtime": 1.4947,
|
9 |
"eval_samples": 1916,
|
10 |
+
"eval_samples_per_second": 1281.891,
|
11 |
+
"eval_steps_per_second": 80.285,
|
12 |
+
"train_loss": 0.1328041532904539,
|
13 |
+
"train_runtime": 90.5157,
|
14 |
"train_samples": 8324,
|
15 |
+
"train_samples_per_second": 367.848,
|
16 |
+
"train_steps_per_second": 23.024
|
17 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime":
|
9 |
"eval_samples": 1916,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 4.0,
|
3 |
+
"eval_accuracy": 0.9473241942924933,
|
4 |
+
"eval_f1": 0.7241245438310427,
|
5 |
+
"eval_loss": 0.1745937019586563,
|
6 |
+
"eval_precision": 0.7045935327893623,
|
7 |
+
"eval_recall": 0.7447692061970931,
|
8 |
+
"eval_runtime": 1.4947,
|
9 |
"eval_samples": 1916,
|
10 |
+
"eval_samples_per_second": 1281.891,
|
11 |
+
"eval_steps_per_second": 80.285
|
12 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 21011223
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ee5bc516deaa9037d742f40795bb6b274bd5ece153efe88ed66b62a57c9ff79
|
3 |
size 21011223
|
train_results.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"train_loss": 0.
|
4 |
-
"train_runtime":
|
5 |
"train_samples": 8324,
|
6 |
-
"train_samples_per_second":
|
7 |
-
"train_steps_per_second":
|
8 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 4.0,
|
3 |
+
"train_loss": 0.1328041532904539,
|
4 |
+
"train_runtime": 90.5157,
|
5 |
"train_samples": 8324,
|
6 |
+
"train_samples_per_second": 367.848,
|
7 |
+
"train_steps_per_second": 23.024
|
8 |
}
|
trainer_state.json
CHANGED
@@ -1,43 +1,541 @@
|
|
1 |
{
|
2 |
-
"best_metric":
|
3 |
-
"best_model_checkpoint":
|
4 |
-
"epoch":
|
5 |
-
"global_step":
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
{
|
11 |
"epoch": 0.96,
|
12 |
-
"learning_rate": 3.
|
13 |
-
"loss": 0.
|
14 |
"step": 500
|
15 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
{
|
17 |
"epoch": 1.92,
|
18 |
-
"learning_rate":
|
19 |
-
"loss": 0.
|
20 |
"step": 1000
|
21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
{
|
23 |
"epoch": 2.88,
|
24 |
-
"learning_rate":
|
25 |
-
"loss": 0.
|
26 |
"step": 1500
|
27 |
},
|
28 |
{
|
29 |
-
"epoch":
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
}
|
37 |
],
|
38 |
-
"max_steps":
|
39 |
-
"num_train_epochs":
|
40 |
-
"total_flos":
|
41 |
"trial_name": null,
|
42 |
"trial_params": null
|
43 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.1745937019586563,
|
3 |
+
"best_model_checkpoint": "/home/sdonoso/data/all_results/ner-c/albert-tiny/epochs_4_bs_16_lr_5e-5/checkpoint-1400",
|
4 |
+
"epoch": 4.0,
|
5 |
+
"global_step": 2084,
|
6 |
"is_hyper_param_search": false,
|
7 |
"is_local_process_zero": true,
|
8 |
"is_world_process_zero": true,
|
9 |
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.1,
|
12 |
+
"eval_accuracy": 0.863771172477427,
|
13 |
+
"eval_f1": 0.24746022618363045,
|
14 |
+
"eval_loss": 0.4690728187561035,
|
15 |
+
"eval_precision": 0.3093697579678888,
|
16 |
+
"eval_recall": 0.20619709311611564,
|
17 |
+
"eval_runtime": 1.4686,
|
18 |
+
"eval_samples_per_second": 1304.616,
|
19 |
+
"eval_steps_per_second": 81.709,
|
20 |
+
"step": 50
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.19,
|
24 |
+
"eval_accuracy": 0.9084722862980293,
|
25 |
+
"eval_f1": 0.5024801196756161,
|
26 |
+
"eval_loss": 0.3399835526943207,
|
27 |
+
"eval_precision": 0.4954968944099379,
|
28 |
+
"eval_recall": 0.5096629931320875,
|
29 |
+
"eval_runtime": 1.4666,
|
30 |
+
"eval_samples_per_second": 1306.423,
|
31 |
+
"eval_steps_per_second": 81.822,
|
32 |
+
"step": 100
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.29,
|
36 |
+
"eval_accuracy": 0.9171060436301325,
|
37 |
+
"eval_f1": 0.5566067486597288,
|
38 |
+
"eval_loss": 0.29001280665397644,
|
39 |
+
"eval_precision": 0.5495874202086253,
|
40 |
+
"eval_recall": 0.5638076984507268,
|
41 |
+
"eval_runtime": 1.5018,
|
42 |
+
"eval_samples_per_second": 1275.795,
|
43 |
+
"eval_steps_per_second": 79.904,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.38,
|
48 |
+
"eval_accuracy": 0.9215053054768338,
|
49 |
+
"eval_f1": 0.5868562353475006,
|
50 |
+
"eval_loss": 0.26263922452926636,
|
51 |
+
"eval_precision": 0.5573111174949728,
|
52 |
+
"eval_recall": 0.6197093116115636,
|
53 |
+
"eval_runtime": 1.4723,
|
54 |
+
"eval_samples_per_second": 1301.379,
|
55 |
+
"eval_steps_per_second": 81.506,
|
56 |
+
"step": 200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.48,
|
60 |
+
"eval_accuracy": 0.9255750346009358,
|
61 |
+
"eval_f1": 0.6203032300593275,
|
62 |
+
"eval_loss": 0.25319042801856995,
|
63 |
+
"eval_precision": 0.6406808510638298,
|
64 |
+
"eval_recall": 0.6011819198211148,
|
65 |
+
"eval_runtime": 1.469,
|
66 |
+
"eval_samples_per_second": 1304.326,
|
67 |
+
"eval_steps_per_second": 81.691,
|
68 |
+
"step": 250
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.58,
|
72 |
+
"eval_accuracy": 0.9309793712515653,
|
73 |
+
"eval_f1": 0.6298792914249882,
|
74 |
+
"eval_loss": 0.22614283859729767,
|
75 |
+
"eval_precision": 0.6184392796675389,
|
76 |
+
"eval_recall": 0.6417505190864079,
|
77 |
+
"eval_runtime": 1.4706,
|
78 |
+
"eval_samples_per_second": 1302.847,
|
79 |
+
"eval_steps_per_second": 81.598,
|
80 |
+
"step": 300
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.67,
|
84 |
+
"eval_accuracy": 0.9334838199433204,
|
85 |
+
"eval_f1": 0.6383647798742139,
|
86 |
+
"eval_loss": 0.21767833828926086,
|
87 |
+
"eval_precision": 0.6285802755844558,
|
88 |
+
"eval_recall": 0.6484587126657083,
|
89 |
+
"eval_runtime": 1.47,
|
90 |
+
"eval_samples_per_second": 1303.418,
|
91 |
+
"eval_steps_per_second": 81.634,
|
92 |
+
"step": 350
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.77,
|
96 |
+
"eval_accuracy": 0.9345383246556384,
|
97 |
+
"eval_f1": 0.6418154877953678,
|
98 |
+
"eval_loss": 0.21528242528438568,
|
99 |
+
"eval_precision": 0.6270953977445901,
|
100 |
+
"eval_recall": 0.657243251876697,
|
101 |
+
"eval_runtime": 1.5017,
|
102 |
+
"eval_samples_per_second": 1275.883,
|
103 |
+
"eval_steps_per_second": 79.909,
|
104 |
+
"step": 400
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.86,
|
108 |
+
"eval_accuracy": 0.9356422592763461,
|
109 |
+
"eval_f1": 0.6500153704272977,
|
110 |
+
"eval_loss": 0.21207766234874725,
|
111 |
+
"eval_precision": 0.626425714708932,
|
112 |
+
"eval_recall": 0.6754512058776553,
|
113 |
+
"eval_runtime": 1.4752,
|
114 |
+
"eval_samples_per_second": 1298.836,
|
115 |
+
"eval_steps_per_second": 81.347,
|
116 |
+
"step": 450
|
117 |
+
},
|
118 |
{
|
119 |
"epoch": 0.96,
|
120 |
+
"learning_rate": 3.807581573896353e-05,
|
121 |
+
"loss": 0.2732,
|
122 |
"step": 500
|
123 |
},
|
124 |
+
{
|
125 |
+
"epoch": 0.96,
|
126 |
+
"eval_accuracy": 0.9400415211230475,
|
127 |
+
"eval_f1": 0.6775403935982847,
|
128 |
+
"eval_loss": 0.19518034160137177,
|
129 |
+
"eval_precision": 0.6507796410709032,
|
130 |
+
"eval_recall": 0.7065963903529787,
|
131 |
+
"eval_runtime": 1.4979,
|
132 |
+
"eval_samples_per_second": 1279.083,
|
133 |
+
"eval_steps_per_second": 80.11,
|
134 |
+
"step": 500
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 1.06,
|
138 |
+
"eval_accuracy": 0.9415738482831345,
|
139 |
+
"eval_f1": 0.68428873074216,
|
140 |
+
"eval_loss": 0.18678122758865356,
|
141 |
+
"eval_precision": 0.6703953417100827,
|
142 |
+
"eval_recall": 0.6987701645104616,
|
143 |
+
"eval_runtime": 1.473,
|
144 |
+
"eval_samples_per_second": 1300.753,
|
145 |
+
"eval_steps_per_second": 81.467,
|
146 |
+
"step": 550
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 1.15,
|
150 |
+
"eval_accuracy": 0.9421670071838133,
|
151 |
+
"eval_f1": 0.6916773778920309,
|
152 |
+
"eval_loss": 0.19731050729751587,
|
153 |
+
"eval_precision": 0.6958138031356069,
|
154 |
+
"eval_recall": 0.6875898418782942,
|
155 |
+
"eval_runtime": 1.4718,
|
156 |
+
"eval_samples_per_second": 1301.838,
|
157 |
+
"eval_steps_per_second": 81.535,
|
158 |
+
"step": 600
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 1.25,
|
162 |
+
"eval_accuracy": 0.9407500164766361,
|
163 |
+
"eval_f1": 0.6780254777070065,
|
164 |
+
"eval_loss": 0.1952008754014969,
|
165 |
+
"eval_precision": 0.6759803143356088,
|
166 |
+
"eval_recall": 0.6800830538252676,
|
167 |
+
"eval_runtime": 1.5038,
|
168 |
+
"eval_samples_per_second": 1274.147,
|
169 |
+
"eval_steps_per_second": 79.8,
|
170 |
+
"step": 650
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 1.34,
|
174 |
+
"eval_accuracy": 0.9399097080340078,
|
175 |
+
"eval_f1": 0.689172175007869,
|
176 |
+
"eval_loss": 0.19703227281570435,
|
177 |
+
"eval_precision": 0.679230649914689,
|
178 |
+
"eval_recall": 0.6994090400894426,
|
179 |
+
"eval_runtime": 1.4697,
|
180 |
+
"eval_samples_per_second": 1303.698,
|
181 |
+
"eval_steps_per_second": 81.651,
|
182 |
+
"step": 700
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 1.44,
|
186 |
+
"eval_accuracy": 0.9425789230870626,
|
187 |
+
"eval_f1": 0.697266881028939,
|
188 |
+
"eval_loss": 0.19310028851032257,
|
189 |
+
"eval_precision": 0.7018935102767438,
|
190 |
+
"eval_recall": 0.6927008465101422,
|
191 |
+
"eval_runtime": 1.4705,
|
192 |
+
"eval_samples_per_second": 1302.989,
|
193 |
+
"eval_steps_per_second": 81.607,
|
194 |
+
"step": 750
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 1.54,
|
198 |
+
"eval_accuracy": 0.9420351940947737,
|
199 |
+
"eval_f1": 0.689247483623582,
|
200 |
+
"eval_loss": 0.1976134181022644,
|
201 |
+
"eval_precision": 0.6894677960684034,
|
202 |
+
"eval_recall": 0.6890273119310014,
|
203 |
+
"eval_runtime": 1.4714,
|
204 |
+
"eval_samples_per_second": 1302.156,
|
205 |
+
"eval_steps_per_second": 81.555,
|
206 |
+
"step": 800
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 1.63,
|
210 |
+
"eval_accuracy": 0.9442265867000593,
|
211 |
+
"eval_f1": 0.6969575339166734,
|
212 |
+
"eval_loss": 0.18812265992164612,
|
213 |
+
"eval_precision": 0.7006132989025178,
|
214 |
+
"eval_recall": 0.6933397220891231,
|
215 |
+
"eval_runtime": 1.4736,
|
216 |
+
"eval_samples_per_second": 1300.193,
|
217 |
+
"eval_steps_per_second": 81.432,
|
218 |
+
"step": 850
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.73,
|
222 |
+
"eval_accuracy": 0.9432050352600013,
|
223 |
+
"eval_f1": 0.6990461049284578,
|
224 |
+
"eval_loss": 0.18850077688694,
|
225 |
+
"eval_precision": 0.69583794904257,
|
226 |
+
"eval_recall": 0.702283980194857,
|
227 |
+
"eval_runtime": 1.5056,
|
228 |
+
"eval_samples_per_second": 1272.624,
|
229 |
+
"eval_steps_per_second": 79.705,
|
230 |
+
"step": 900
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 1.82,
|
234 |
+
"eval_accuracy": 0.9444078296974889,
|
235 |
+
"eval_f1": 0.7056041617403641,
|
236 |
+
"eval_loss": 0.18260571360588074,
|
237 |
+
"eval_precision": 0.6965452847805789,
|
238 |
+
"eval_recall": 0.7149017728797317,
|
239 |
+
"eval_runtime": 1.4756,
|
240 |
+
"eval_samples_per_second": 1298.431,
|
241 |
+
"eval_steps_per_second": 81.321,
|
242 |
+
"step": 950
|
243 |
+
},
|
244 |
{
|
245 |
"epoch": 1.92,
|
246 |
+
"learning_rate": 2.607965451055662e-05,
|
247 |
+
"loss": 0.1235,
|
248 |
"step": 1000
|
249 |
},
|
250 |
+
{
|
251 |
+
"epoch": 1.92,
|
252 |
+
"eval_accuracy": 0.9451163250510776,
|
253 |
+
"eval_f1": 0.7066519546027743,
|
254 |
+
"eval_loss": 0.18071572482585907,
|
255 |
+
"eval_precision": 0.6975260619262487,
|
256 |
+
"eval_recall": 0.7160198051429484,
|
257 |
+
"eval_runtime": 1.4701,
|
258 |
+
"eval_samples_per_second": 1303.293,
|
259 |
+
"eval_steps_per_second": 81.626,
|
260 |
+
"step": 1000
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 2.02,
|
264 |
+
"eval_accuracy": 0.9455282409543267,
|
265 |
+
"eval_f1": 0.7122369446609509,
|
266 |
+
"eval_loss": 0.17818446457386017,
|
267 |
+
"eval_precision": 0.6955396559598113,
|
268 |
+
"eval_recall": 0.7297556300910397,
|
269 |
+
"eval_runtime": 1.4738,
|
270 |
+
"eval_samples_per_second": 1300.036,
|
271 |
+
"eval_steps_per_second": 81.422,
|
272 |
+
"step": 1050
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 2.11,
|
276 |
+
"eval_accuracy": 0.9441277268832795,
|
277 |
+
"eval_f1": 0.7015257469802925,
|
278 |
+
"eval_loss": 0.18732576072216034,
|
279 |
+
"eval_precision": 0.6980863514154674,
|
280 |
+
"eval_recall": 0.7049992014055263,
|
281 |
+
"eval_runtime": 1.4745,
|
282 |
+
"eval_samples_per_second": 1299.388,
|
283 |
+
"eval_steps_per_second": 81.381,
|
284 |
+
"step": 1100
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 2.21,
|
288 |
+
"eval_accuracy": 0.9422493903644632,
|
289 |
+
"eval_f1": 0.6907414521705724,
|
290 |
+
"eval_loss": 0.19080577790737152,
|
291 |
+
"eval_precision": 0.6655315368670418,
|
292 |
+
"eval_recall": 0.7179364318798914,
|
293 |
+
"eval_runtime": 1.5005,
|
294 |
+
"eval_samples_per_second": 1276.934,
|
295 |
+
"eval_steps_per_second": 79.975,
|
296 |
+
"step": 1150
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 2.3,
|
300 |
+
"eval_accuracy": 0.945956633493706,
|
301 |
+
"eval_f1": 0.712525347059741,
|
302 |
+
"eval_loss": 0.181381955742836,
|
303 |
+
"eval_precision": 0.696235329980186,
|
304 |
+
"eval_recall": 0.7295959111962945,
|
305 |
+
"eval_runtime": 1.4739,
|
306 |
+
"eval_samples_per_second": 1299.963,
|
307 |
+
"eval_steps_per_second": 81.417,
|
308 |
+
"step": 1200
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 2.4,
|
312 |
+
"eval_accuracy": 0.9461873063995254,
|
313 |
+
"eval_f1": 0.7136230091232412,
|
314 |
+
"eval_loss": 0.17689131200313568,
|
315 |
+
"eval_precision": 0.6915929866626704,
|
316 |
+
"eval_recall": 0.7371026992493211,
|
317 |
+
"eval_runtime": 1.472,
|
318 |
+
"eval_samples_per_second": 1301.631,
|
319 |
+
"eval_steps_per_second": 81.522,
|
320 |
+
"step": 1250
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 2.5,
|
324 |
+
"eval_accuracy": 0.9468463718447242,
|
325 |
+
"eval_f1": 0.7252625760088447,
|
326 |
+
"eval_loss": 0.1800052374601364,
|
327 |
+
"eval_precision": 0.7172758512964699,
|
328 |
+
"eval_recall": 0.7334291646701805,
|
329 |
+
"eval_runtime": 1.4724,
|
330 |
+
"eval_samples_per_second": 1301.261,
|
331 |
+
"eval_steps_per_second": 81.499,
|
332 |
+
"step": 1300
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 2.59,
|
336 |
+
"eval_accuracy": 0.9469617082976339,
|
337 |
+
"eval_f1": 0.7245991396167384,
|
338 |
+
"eval_loss": 0.17777691781520844,
|
339 |
+
"eval_precision": 0.7099938687921521,
|
340 |
+
"eval_recall": 0.7398179204599904,
|
341 |
+
"eval_runtime": 1.4757,
|
342 |
+
"eval_samples_per_second": 1298.39,
|
343 |
+
"eval_steps_per_second": 81.319,
|
344 |
+
"step": 1350
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 2.69,
|
348 |
+
"eval_accuracy": 0.9473241942924933,
|
349 |
+
"eval_f1": 0.7241245438310427,
|
350 |
+
"eval_loss": 0.1745937019586563,
|
351 |
+
"eval_precision": 0.7045935327893623,
|
352 |
+
"eval_recall": 0.7447692061970931,
|
353 |
+
"eval_runtime": 1.5088,
|
354 |
+
"eval_samples_per_second": 1269.882,
|
355 |
+
"eval_steps_per_second": 79.533,
|
356 |
+
"step": 1400
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 2.78,
|
360 |
+
"eval_accuracy": 0.9480985961906018,
|
361 |
+
"eval_f1": 0.7267085687007716,
|
362 |
+
"eval_loss": 0.17996077239513397,
|
363 |
+
"eval_precision": 0.724001268230818,
|
364 |
+
"eval_recall": 0.7294361923015493,
|
365 |
+
"eval_runtime": 1.4708,
|
366 |
+
"eval_samples_per_second": 1302.711,
|
367 |
+
"eval_steps_per_second": 81.589,
|
368 |
+
"step": 1450
|
369 |
+
},
|
370 |
{
|
371 |
"epoch": 2.88,
|
372 |
+
"learning_rate": 1.4083493282149713e-05,
|
373 |
+
"loss": 0.083,
|
374 |
"step": 1500
|
375 |
},
|
376 |
{
|
377 |
+
"epoch": 2.88,
|
378 |
+
"eval_accuracy": 0.9467475120279444,
|
379 |
+
"eval_f1": 0.714475847490801,
|
380 |
+
"eval_loss": 0.1799446940422058,
|
381 |
+
"eval_precision": 0.7007063882063882,
|
382 |
+
"eval_recall": 0.7287973167225683,
|
383 |
+
"eval_runtime": 1.4712,
|
384 |
+
"eval_samples_per_second": 1302.299,
|
385 |
+
"eval_steps_per_second": 81.564,
|
386 |
+
"step": 1500
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 2.98,
|
390 |
+
"eval_accuracy": 0.9470440914782838,
|
391 |
+
"eval_f1": 0.7189552956257009,
|
392 |
+
"eval_loss": 0.18403704464435577,
|
393 |
+
"eval_precision": 0.7212666773830574,
|
394 |
+
"eval_recall": 0.7166586807219294,
|
395 |
+
"eval_runtime": 1.4732,
|
396 |
+
"eval_samples_per_second": 1300.543,
|
397 |
+
"eval_steps_per_second": 81.454,
|
398 |
+
"step": 1550
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 3.07,
|
402 |
+
"eval_accuracy": 0.9481150728267317,
|
403 |
+
"eval_f1": 0.7218129404228059,
|
404 |
+
"eval_loss": 0.18616726994514465,
|
405 |
+
"eval_precision": 0.7237835233659868,
|
406 |
+
"eval_recall": 0.7198530586168344,
|
407 |
+
"eval_runtime": 1.4726,
|
408 |
+
"eval_samples_per_second": 1301.059,
|
409 |
+
"eval_steps_per_second": 81.486,
|
410 |
+
"step": 1600
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 3.17,
|
414 |
+
"eval_accuracy": 0.9484446055493311,
|
415 |
+
"eval_f1": 0.7236070954129874,
|
416 |
+
"eval_loss": 0.18031327426433563,
|
417 |
+
"eval_precision": 0.7083843329253366,
|
418 |
+
"eval_recall": 0.7394984826704999,
|
419 |
+
"eval_runtime": 1.5062,
|
420 |
+
"eval_samples_per_second": 1272.051,
|
421 |
+
"eval_steps_per_second": 79.669,
|
422 |
+
"step": 1650
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 3.26,
|
426 |
+
"eval_accuracy": 0.9472582877479734,
|
427 |
+
"eval_f1": 0.7165758509042092,
|
428 |
+
"eval_loss": 0.1847413182258606,
|
429 |
+
"eval_precision": 0.7086847860043737,
|
430 |
+
"eval_recall": 0.7246446254591918,
|
431 |
+
"eval_runtime": 1.4724,
|
432 |
+
"eval_samples_per_second": 1301.279,
|
433 |
+
"eval_steps_per_second": 81.5,
|
434 |
+
"step": 1700
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 3.36,
|
438 |
+
"eval_accuracy": 0.9482139326435115,
|
439 |
+
"eval_f1": 0.7222266150075118,
|
440 |
+
"eval_loss": 0.18235260248184204,
|
441 |
+
"eval_precision": 0.7151581584716568,
|
442 |
+
"eval_recall": 0.7294361923015493,
|
443 |
+
"eval_runtime": 1.4742,
|
444 |
+
"eval_samples_per_second": 1299.703,
|
445 |
+
"eval_steps_per_second": 81.401,
|
446 |
+
"step": 1750
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 3.45,
|
450 |
+
"eval_accuracy": 0.9486917550912806,
|
451 |
+
"eval_f1": 0.7286566227244193,
|
452 |
+
"eval_loss": 0.17917561531066895,
|
453 |
+
"eval_precision": 0.7161807805028536,
|
454 |
+
"eval_recall": 0.7415748283021881,
|
455 |
+
"eval_runtime": 1.4683,
|
456 |
+
"eval_samples_per_second": 1304.936,
|
457 |
+
"eval_steps_per_second": 81.729,
|
458 |
+
"step": 1800
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 3.55,
|
462 |
+
"eval_accuracy": 0.9481480260989916,
|
463 |
+
"eval_f1": 0.7228443887540136,
|
464 |
+
"eval_loss": 0.1824788898229599,
|
465 |
+
"eval_precision": 0.7091272280270436,
|
466 |
+
"eval_recall": 0.7371026992493211,
|
467 |
+
"eval_runtime": 1.471,
|
468 |
+
"eval_samples_per_second": 1302.492,
|
469 |
+
"eval_steps_per_second": 81.576,
|
470 |
+
"step": 1850
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 3.65,
|
474 |
+
"eval_accuracy": 0.9487411849996704,
|
475 |
+
"eval_f1": 0.7265369649805447,
|
476 |
+
"eval_loss": 0.17811530828475952,
|
477 |
+
"eval_precision": 0.708453483077857,
|
478 |
+
"eval_recall": 0.7455678006708194,
|
479 |
+
"eval_runtime": 1.5062,
|
480 |
+
"eval_samples_per_second": 1272.042,
|
481 |
+
"eval_steps_per_second": 79.669,
|
482 |
+
"step": 1900
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 3.74,
|
486 |
+
"eval_accuracy": 0.9482963158241613,
|
487 |
+
"eval_f1": 0.7255009823182711,
|
488 |
+
"eval_loss": 0.18192069232463837,
|
489 |
+
"eval_precision": 0.7141089108910891,
|
490 |
+
"eval_recall": 0.7372624181440665,
|
491 |
+
"eval_runtime": 1.4716,
|
492 |
+
"eval_samples_per_second": 1301.966,
|
493 |
+
"eval_steps_per_second": 81.543,
|
494 |
+
"step": 1950
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 3.84,
|
498 |
+
"learning_rate": 2.0873320537428026e-06,
|
499 |
+
"loss": 0.0639,
|
500 |
+
"step": 2000
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 3.84,
|
504 |
+
"eval_accuracy": 0.9487576616358004,
|
505 |
+
"eval_f1": 0.7273722057214319,
|
506 |
+
"eval_loss": 0.17967551946640015,
|
507 |
+
"eval_precision": 0.7122302158273381,
|
508 |
+
"eval_recall": 0.7431720172496407,
|
509 |
+
"eval_runtime": 1.4718,
|
510 |
+
"eval_samples_per_second": 1301.808,
|
511 |
+
"eval_steps_per_second": 81.533,
|
512 |
+
"step": 2000
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 3.93,
|
516 |
+
"eval_accuracy": 0.9482468859157714,
|
517 |
+
"eval_f1": 0.7234075810863619,
|
518 |
+
"eval_loss": 0.18143223226070404,
|
519 |
+
"eval_precision": 0.7082950719314356,
|
520 |
+
"eval_recall": 0.7391790448810094,
|
521 |
+
"eval_runtime": 1.4715,
|
522 |
+
"eval_samples_per_second": 1302.101,
|
523 |
+
"eval_steps_per_second": 81.551,
|
524 |
+
"step": 2050
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 4.0,
|
528 |
+
"step": 2084,
|
529 |
+
"total_flos": 20529237663360.0,
|
530 |
+
"train_loss": 0.1328041532904539,
|
531 |
+
"train_runtime": 90.5157,
|
532 |
+
"train_samples_per_second": 367.848,
|
533 |
+
"train_steps_per_second": 23.024
|
534 |
}
|
535 |
],
|
536 |
+
"max_steps": 2084,
|
537 |
+
"num_train_epochs": 4,
|
538 |
+
"total_flos": 20529237663360.0,
|
539 |
"trial_name": null,
|
540 |
"trial_params": null
|
541 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2863
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:415dd26e4c9bb86cdb797bec4f0ea4d492d7142400b45ffc20323abb9907ca27
|
3 |
size 2863
|