File size: 5,364 Bytes
12f7758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675e85c
 
12f7758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eba5ff9
12f7758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
license: creativeml-openrail-m
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
tags:
  - sdxl
  - sdxl-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'ggn_style painting of a hipster making a chair'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
- text: 'ggn_style painting of a hamster'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_2_0.png
- text: 'in the style of ggn_style, A painting of a woman stands near the water holding an object. Another woman swims in the water. A tree with twisted branches is at the foreground left. Flowers and vegetation are near the lower center. Hills with vegetation are in the background. Text ''Parau na te Varua ino'' at the bottom left and artist''s signature at the lower right.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_3_0.png
- text: 'ggn_style, A seated woman with long dark hair is depicted in a front-facing view. She is wearing a dress with a white collar and appears to be in her thirties. Her hands are on her lap. Green leaves and flowers surround her.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_4_0.png
- text: 'ggm_style, tropical fruits and flowers, bold outlines, non-naturalistic colors, decorative composition'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_5_0.png
- text: 'DaVinciXL, One mechanical device with gears and levers, no human subjects, one item in the image.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_6_0.png
---

# davinci-sdxl-lora-05

This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0).


The main validation prompt used during training was:



```
DaVinciXL, One mechanical device with gears and levers, no human subjects, one item in the image.
```

## Validation settings
- CFG: `4.2`
- CFG Rescale: `0.0`
- Steps: `30`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 10
- Training steps: 2400
- Learning rate: 8e-05
- Effective batch size: 16
  - Micro-batch size: 8
  - Gradient accumulation steps: 2
  - Number of GPUs: 1
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: optimi-stableadamwweight_decay=1e-3
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}
```

## Datasets

### davinci-sdxl-512
- Repeats: 10
- Total number of images: 50
- Total number of aspect buckets: 8
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### davinci-sdxl-1024
- Repeats: 10
- Total number of images: 50
- Total number of aspect buckets: 16
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### davinci-sdxl-512-crop
- Repeats: 10
- Total number of images: 50
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
### davinci-sdxl-1024-crop
- Repeats: 10
- Total number of images: 50
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square


## Inference


```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights

model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()

prompt = "DaVinciXL, One mechanical device with gears and levers, no human subjects, one item in the image."
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")
```