File size: 6,708 Bytes
db7f52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993c6cc
9a9792d
db7f52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9792d
db7f52d
 
 
 
 
 
 
 
993c6cc
db7f52d
 
 
 
 
 
 
 
9a9792d
db7f52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'In the style of a c4ss4tt oil painting, A child wearing an elaborate blue silk dress with ruffles and white lace trim sits near a window, the fabric catching soft light.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
- text: 'In the style of a c4ss4tt oil painting, A close portrait of a young child''s face with rosy cheeks and delicate features, gentle lighting from a nearby window.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_2_0.png
- text: 'In the style of a c4ss4tt oil painting, Strong window light falls across a child''s face and shoulder, creating bold shadows on their blue dress.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_3_0.png
- text: 'In the style of a c4ss4tt oil painting, A child in a blue hat stands by a window.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_4_0.png
- text: 'In the style of a c4ss4tt oil painting, A woman in soft colors holds her baby close.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_5_0.png
- text: 'In the style of a c4ss4tt oil painting, A woman in a detailed white lace dress reads while seated by a window with gauzy curtains, various textures visible in the furnishings.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_6_0.png
- text: 'In the style of a c4ss4tt oil painting, A mother in a textured knit sweater checks her phone while her baby sleeps against her shoulder.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_7_0.png
- text: 'In the style of a c4ss4tt oil painting, A mother cat grooms her kitten by a sunlit window, their fur catching the light.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_8_0.png
---

# Mary-Cassatt-Oil-Detail-New-Phase-1-Redo-Flux-LoKr

This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co./black-forest-labs/FLUX.1-dev).


No validation prompt was used during training.




None


## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 6
- Training steps: 2850
- Learning rate: 0.0004
- Max grad norm: 0.1
- Effective batch size: 4
  - Micro-batch size: 4
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Prediction type: flow-matching (extra parameters=['shift=1.5', 'flux_guidance_value=1.0'])
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
    "algo": "lokr",
    "multiplier": 1.0,
    "linear_dim": 10000,
    "linear_alpha": 1,
    "factor": 16,
    "apply_preset": {
        "target_module": [
            "Attention",
            "FeedForward"
        ],
        "module_algo_map": {
            "Attention": {
                "factor": 16
            },
            "FeedForward": {
                "factor": 8
            }
        }
    }
}
```

## Datasets

### cassatt-512
- Repeats: 11
- Total number of images: 49
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cassatt-768
- Repeats: 11
- Total number of images: 49
- Total number of aspect buckets: 8
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cassatt-1024
- Repeats: 3
- Total number of images: 49
- Total number of aspect buckets: 10
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights


def download_adapter(repo_id: str):
    import os
    from huggingface_hub import hf_hub_download
    adapter_filename = "pytorch_lora_weights.safetensors"
    cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
    cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
    path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
    path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
    os.makedirs(path_to_adapter, exist_ok=True)
    hf_hub_download(
        repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
    )

    return path_to_adapter_file
    
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_repo_id = 'davidrd123/Mary-Cassatt-Oil-Detail-New-Phase-1-Redo-Flux-LoKr'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer)
wrapper.merge_to()

prompt = "An astronaut is riding a horse through the jungles of Thailand."


## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```