File size: 856 Bytes
a3873ea a8ede26 b0c4481 fa50338 b0c4481 a3873ea a8ede26 03c5ef2 4fe29cd 03c5ef2 a8ede26 fa50338 a8ede26 4a734ad a8ede26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
---
license: cc
language: es
widget:
- text: "Me cae muy bien."
example_title: "Non-racist example"
- text: "Unos menas agreden a una mujer."
example_title: "Racist example"
---
Model to predict whether a given text is racist or not:
* `LABEL_0` output indicates non-racist text
* `LABEL_1` output indicates racist text
Usage:
```python
from transformers import pipeline
RACISM_MODEL = "davidmasip/racism"
racism_analysis_pipe = pipeline("text-classification",
model=RACISM_MODEL, tokenizer=RACISM_MODEL)
results = racism_analysis_pipe("Unos menas agreden a una mujer.")
def clean_labels(results):
for result in results:
label = "Non-racist" if results["label"] == "LABEL_0" else "Racist"
result["label"] = label
clean_labels(results)
print(results)
``` |