--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-2b tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-2b-faroese-100h-60-epochs_v20250105_2 results: [] --- # wav2vec2-xls-r-2b-faroese-100h-60-epochs_v20250105_2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co./facebook/wav2vec2-xls-r-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1126 - Wer: 18.2932 - Cer: 3.9213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 6000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:------:|:---------------:|:-------:|:-------:| | 1.9282 | 0.4877 | 1000 | 0.4589 | 49.5572 | 14.5008 | | 1.4639 | 0.9754 | 2000 | 0.2533 | 32.4360 | 8.4524 | | 1.065 | 1.4628 | 3000 | 0.2168 | 30.5811 | 7.8859 | | 0.7834 | 1.9505 | 4000 | 0.2123 | 30.1405 | 7.7542 | | 0.6194 | 2.4379 | 5000 | 0.2405 | 31.5328 | 8.2552 | | 0.6979 | 2.9256 | 6000 | 0.2070 | 29.9247 | 7.5964 | | 0.6727 | 3.4131 | 7000 | 0.2236 | 31.0393 | 8.2149 | | 0.6106 | 3.9008 | 8000 | 0.2121 | 29.8145 | 7.6989 | | 0.5888 | 4.3882 | 9000 | 0.1929 | 28.8673 | 7.3328 | | 0.5875 | 4.8759 | 10000 | 0.1903 | 28.4928 | 7.3076 | | 0.5104 | 5.3633 | 11000 | 0.1922 | 28.6117 | 7.1624 | | 0.4981 | 5.8510 | 12000 | 0.1713 | 27.4662 | 6.8713 | | 0.4147 | 6.3385 | 13000 | 0.1799 | 27.0036 | 6.6835 | | 0.4442 | 6.8261 | 14000 | 0.1768 | 27.6600 | 6.9904 | | 0.3889 | 7.3136 | 15000 | 0.1729 | 26.5850 | 6.5620 | | 0.3941 | 7.8013 | 16000 | 0.1670 | 26.7172 | 6.7435 | | 0.3325 | 8.2887 | 17000 | 0.1763 | 26.5101 | 6.5991 | | 0.3761 | 8.7764 | 18000 | 0.1591 | 25.9506 | 6.4555 | | 0.2741 | 9.2638 | 19000 | 0.1674 | 25.4615 | 6.2219 | | 0.2918 | 9.7515 | 20000 | 0.1638 | 25.8757 | 6.3600 | | 0.2684 | 10.2390 | 21000 | 0.1621 | 25.0650 | 6.1217 | | 0.2714 | 10.7267 | 22000 | 0.1443 | 24.8227 | 6.0239 | | 0.2889 | 11.2141 | 23000 | 0.1512 | 24.6817 | 6.0176 | | 0.2511 | 11.7018 | 24000 | 0.1506 | 24.1309 | 5.8125 | | 0.2377 | 12.1892 | 25000 | 0.1513 | 23.9062 | 5.8054 | | 0.2285 | 12.6769 | 26000 | 0.1560 | 24.1706 | 5.8701 | | 0.2115 | 13.1644 | 27000 | 0.1557 | 23.9811 | 5.8330 | | 0.228 | 13.6520 | 28000 | 0.1411 | 23.5978 | 5.6602 | | 0.1855 | 14.1395 | 29000 | 0.1444 | 23.5097 | 5.5623 | | 0.2058 | 14.6272 | 30000 | 0.1488 | 23.7388 | 5.6910 | | 0.1894 | 15.1146 | 31000 | 0.1568 | 23.4084 | 5.6310 | | 0.1882 | 15.6023 | 32000 | 0.1432 | 23.2321 | 5.5434 | | 0.1794 | 16.0897 | 33000 | 0.1454 | 22.8576 | 5.4937 | | 0.1535 | 16.5774 | 34000 | 0.1491 | 22.8753 | 5.3888 | | 0.1688 | 17.0649 | 35000 | 0.1390 | 22.9634 | 5.4645 | | 0.1705 | 17.5525 | 36000 | 0.1459 | 22.9281 | 5.3998 | | 0.1401 | 18.0400 | 37000 | 0.1466 | 22.8709 | 5.4330 | | 0.1476 | 18.5277 | 38000 | 0.1440 | 22.8841 | 5.3698 | | 0.1426 | 19.0151 | 39000 | 0.1436 | 22.5933 | 5.2799 | | 0.1375 | 19.5028 | 40000 | 0.1431 | 22.2584 | 5.2428 | | 0.1491 | 19.9905 | 41000 | 0.1339 | 22.1307 | 5.1110 | | 0.1564 | 20.4779 | 42000 | 0.1303 | 21.8619 | 5.0771 | | 0.1427 | 20.9656 | 43000 | 0.1392 | 21.9809 | 5.1710 | | 0.1145 | 21.4531 | 44000 | 0.1332 | 21.7518 | 5.0661 | | 0.1453 | 21.9407 | 45000 | 0.1289 | 21.8839 | 5.0953 | | 0.1184 | 22.4282 | 46000 | 0.1348 | 21.8707 | 5.0811 | | 0.1349 | 22.9159 | 47000 | 0.1316 | 21.6240 | 4.9722 | | 0.1196 | 23.4033 | 48000 | 0.1315 | 21.8575 | 5.0393 | | 0.1199 | 23.8910 | 49000 | 0.1323 | 21.7430 | 5.0692 | | 0.1177 | 24.3784 | 50000 | 0.1356 | 21.5579 | 4.9738 | | 0.1101 | 24.8661 | 51000 | 0.1343 | 21.6108 | 5.0187 | | 0.1173 | 25.3536 | 52000 | 0.1286 | 21.4125 | 4.9327 | | 0.1256 | 25.8413 | 53000 | 0.1283 | 21.4257 | 4.8878 | | 0.1157 | 26.3287 | 54000 | 0.1340 | 21.1570 | 4.8428 | | 0.1044 | 26.8164 | 55000 | 0.1277 | 21.2143 | 4.8460 | | 0.1019 | 27.3038 | 56000 | 0.1299 | 21.4346 | 4.9217 | | 0.1116 | 27.7915 | 57000 | 0.1270 | 21.1217 | 4.8239 | | 0.1055 | 28.2790 | 58000 | 0.1323 | 21.2231 | 4.8278 | | 0.1047 | 28.7666 | 59000 | 0.1231 | 20.9191 | 4.7315 | | 0.1129 | 29.2541 | 60000 | 0.1337 | 21.1394 | 4.8112 | | 0.1174 | 29.7418 | 61000 | 0.1319 | 20.7560 | 4.7481 | | 0.0992 | 30.2292 | 62000 | 0.1342 | 21.0777 | 4.8538 | | 0.1128 | 30.7169 | 63000 | 0.1297 | 21.0292 | 4.7781 | | 0.1103 | 31.2043 | 64000 | 0.1282 | 20.7428 | 4.6850 | | 0.1076 | 31.6920 | 65000 | 0.1272 | 20.5710 | 4.6866 | | 0.0998 | 32.1795 | 66000 | 0.1329 | 20.5974 | 4.6708 | | 0.0863 | 32.6672 | 67000 | 0.1186 | 20.5005 | 4.5998 | | 0.1026 | 33.1546 | 68000 | 0.1225 | 20.6635 | 4.6763 | | 0.0782 | 33.6423 | 69000 | 0.1345 | 20.5622 | 4.6913 | | 0.0837 | 34.1297 | 70000 | 0.1349 | 20.5137 | 4.6069 | | 0.1144 | 34.6174 | 71000 | 0.1220 | 20.4873 | 4.6511 | | 0.0969 | 35.1049 | 72000 | 0.1240 | 20.5886 | 4.6353 | | 0.0848 | 35.5925 | 73000 | 0.1307 | 20.2934 | 4.5911 | | 0.0748 | 36.0800 | 74000 | 0.1275 | 20.2229 | 4.5201 | | 0.0929 | 36.5677 | 75000 | 0.1184 | 20.1745 | 4.4909 | | 0.0877 | 37.0551 | 76000 | 0.1287 | 20.0687 | 4.5106 | | 0.0932 | 37.5428 | 77000 | 0.1189 | 20.0599 | 4.5233 | | 0.0923 | 38.0302 | 78000 | 0.1303 | 20.1877 | 4.5138 | | 0.068 | 38.5179 | 79000 | 0.1274 | 19.8881 | 4.4412 | | 0.1069 | 39.0054 | 80000 | 0.1219 | 20.0952 | 4.4956 | | 0.0735 | 39.4931 | 81000 | 0.1225 | 19.8572 | 4.4420 | | 0.0745 | 39.9807 | 82000 | 0.1246 | 19.7339 | 4.4065 | | 0.0664 | 40.4682 | 83000 | 0.1262 | 19.8132 | 4.4104 | | 0.0783 | 40.9559 | 84000 | 0.1285 | 19.8000 | 4.4664 | | 0.0884 | 41.4433 | 85000 | 0.1123 | 19.5312 | 4.3181 | | 0.0704 | 41.9310 | 86000 | 0.1226 | 19.5356 | 4.3434 | | 0.0675 | 42.4184 | 87000 | 0.1330 | 19.7030 | 4.3536 | | 0.093 | 42.9061 | 88000 | 0.1207 | 19.5841 | 4.3662 | | 0.0809 | 43.3936 | 89000 | 0.1217 | 19.4872 | 4.3142 | | 0.0668 | 43.8812 | 90000 | 0.1185 | 19.5180 | 4.2731 | | 0.0968 | 44.3687 | 91000 | 0.1156 | 19.4079 | 4.2818 | | 0.0568 | 44.8564 | 92000 | 0.1191 | 19.5180 | 4.2992 | | 0.0731 | 45.3438 | 93000 | 0.1165 | 19.4695 | 4.2653 | | 0.0562 | 45.8315 | 94000 | 0.1220 | 19.4431 | 4.2692 | | 0.064 | 46.3189 | 95000 | 0.1213 | 19.3946 | 4.2589 | | 0.0638 | 46.8066 | 96000 | 0.1202 | 19.0906 | 4.1682 | | 0.0509 | 47.2941 | 97000 | 0.1232 | 19.2977 | 4.2290 | | 0.0585 | 47.7818 | 98000 | 0.1147 | 19.2052 | 4.1935 | | 0.0592 | 48.2692 | 99000 | 0.1199 | 19.1038 | 4.1556 | | 0.0488 | 48.7569 | 100000 | 0.1159 | 19.0862 | 4.1580 | | 0.0513 | 49.2443 | 101000 | 0.1168 | 19.0510 | 4.1185 | | 0.076 | 49.7320 | 102000 | 0.1053 | 18.8351 | 4.0743 | | 0.0466 | 50.2195 | 103000 | 0.1129 | 18.8836 | 4.1035 | | 0.0472 | 50.7071 | 104000 | 0.1210 | 18.8836 | 4.1114 | | 0.0433 | 51.1946 | 105000 | 0.1154 | 18.7822 | 4.0751 | | 0.056 | 51.6823 | 106000 | 0.1161 | 18.7734 | 4.0854 | | 0.0419 | 52.1697 | 107000 | 0.1125 | 18.6456 | 4.0365 | | 0.0432 | 52.6574 | 108000 | 0.1113 | 18.6677 | 4.0167 | | 0.0438 | 53.1448 | 109000 | 0.1139 | 18.5840 | 4.0136 | | 0.0387 | 53.6325 | 110000 | 0.1119 | 18.6104 | 4.0207 | | 0.0356 | 54.1200 | 111000 | 0.1114 | 18.5575 | 3.9757 | | 0.0365 | 54.6077 | 112000 | 0.1187 | 18.5311 | 3.9844 | | 0.0416 | 55.0951 | 113000 | 0.1136 | 18.5135 | 3.9986 | | 0.0456 | 55.5828 | 114000 | 0.1179 | 18.4518 | 3.9749 | | 0.0249 | 56.0702 | 115000 | 0.1123 | 18.3769 | 3.9370 | | 0.0324 | 56.5579 | 116000 | 0.1148 | 18.3945 | 3.9410 | | 0.0383 | 57.0454 | 117000 | 0.1127 | 18.3108 | 3.9307 | | 0.0287 | 57.5330 | 118000 | 0.1100 | 18.4077 | 3.9370 | | 0.026 | 58.0205 | 119000 | 0.1122 | 18.3460 | 3.9228 | | 0.0284 | 58.5082 | 120000 | 0.1137 | 18.3372 | 3.9299 | | 0.0287 | 58.9959 | 121000 | 0.1130 | 18.2755 | 3.9149 | | 0.0283 | 59.4833 | 122000 | 0.1122 | 18.2844 | 3.9197 | | 0.0286 | 59.9710 | 123000 | 0.1126 | 18.2932 | 3.9213 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0