--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/wav2vec2-base datasets: - timit_asr metrics: - wer model-index: - name: wav2vec2-base-timit-demo-google-colab results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: timit_asr type: timit_asr config: clean split: None args: clean metrics: - type: wer value: 0.33795052029494865 name: Wer --- # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.5720 - Wer: 0.3380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 3.466 | 1.0040 | 500 | 1.4947 | 0.9858 | | 0.8266 | 2.0080 | 1000 | 0.5298 | 0.5179 | | 0.438 | 3.0120 | 1500 | 0.4565 | 0.4564 | | 0.2918 | 4.0161 | 2000 | 0.4528 | 0.4382 | | 0.2282 | 5.0201 | 2500 | 0.4541 | 0.4095 | | 0.184 | 6.0241 | 3000 | 0.5109 | 0.4053 | | 0.1513 | 7.0281 | 3500 | 0.5116 | 0.3923 | | 0.1378 | 8.0321 | 4000 | 0.5137 | 0.3876 | | 0.1194 | 9.0361 | 4500 | 0.5208 | 0.3961 | | 0.1072 | 10.0402 | 5000 | 0.5417 | 0.3845 | | 0.0982 | 11.0442 | 5500 | 0.5653 | 0.3847 | | 0.0868 | 12.0482 | 6000 | 0.4593 | 0.3722 | | 0.0774 | 13.0522 | 6500 | 0.4822 | 0.3723 | | 0.0723 | 14.0562 | 7000 | 0.5303 | 0.3702 | | 0.0635 | 15.0602 | 7500 | 0.4888 | 0.3742 | | 0.0597 | 16.0643 | 8000 | 0.5254 | 0.3638 | | 0.0571 | 17.0683 | 8500 | 0.5107 | 0.3632 | | 0.0491 | 18.0723 | 9000 | 0.5649 | 0.3575 | | 0.0511 | 19.0763 | 9500 | 0.5430 | 0.3627 | | 0.0425 | 20.0803 | 10000 | 0.5726 | 0.3633 | | 0.0386 | 21.0843 | 10500 | 0.5977 | 0.3657 | | 0.0388 | 22.0884 | 11000 | 0.5430 | 0.3570 | | 0.0338 | 23.0924 | 11500 | 0.5612 | 0.3535 | | 0.0301 | 24.0964 | 12000 | 0.5841 | 0.3514 | | 0.0272 | 25.1004 | 12500 | 0.5682 | 0.3457 | | 0.0255 | 26.1044 | 13000 | 0.5657 | 0.3494 | | 0.0234 | 27.1084 | 13500 | 0.5611 | 0.3450 | | 0.0248 | 28.1124 | 14000 | 0.5721 | 0.3399 | | 0.0203 | 29.1165 | 14500 | 0.5720 | 0.3380 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1