File size: 25,194 Bytes
26bece5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
---
base_model: BAAI/bge-base-en-v1.5
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:50
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Statistics & Probability
sentences:
- 'Course language: Python'
- 'Prerequisite course required: Intermediate Statistics'
- This course is designed for learners who would like to learn about statistics
and apply it for decision-making. This course is a comprehensive review of advanced
statistics topics on probability like permutations and combinations, joint probability,
conditional probability, marginal probability, and Bayes' theorem that provides
a way to revise existing predictions or update probabilities given new or additional
evidence.
- Professionals some Python experience who would like to expand their skill set
to more advanced Python visualization techniques and tools.
- source_sentence: Intermediate Statistics
sentences:
- 'Course language: Python'
- Professionals some Python experience who would like to expand their skill set
to more advanced Python visualization techniques and tools.
- This course is designed for learners who would like to learn about statistics
and apply it for decision-making. This course is a comprehensive review of intermediate
statistics topics like t-value, t-distribution, chi-square distribution, f-statistic,
and f-distribution that enable us to compare observed and expected frequencies
objectively.
- 'Prerequisite course required: Introduction to Statistics'
- source_sentence: Cypress
sentences:
- Cypress is an end-to-end testing framework for your web application. This course
explores its features, core concepts, its ecosystem, and how to write tests.
- 'Course language: TBD'
- 'Prerequisite course required: Unit Testing in Jest'
- Professionals who would like to explore the world of testing web applications
- source_sentence: Intermediate Outlier Detection
sentences:
- 'Prerequisite course required: Intro to Outlier Detection'
- Detecting outlier data points are powerful machine learning techniques. This course
covers how techniques like Local Outlier Factor and Isolation Forest play a role
in anomaly and outlier detection. By the end of the course, students will learn
to implement these techniques to identify anomalous data points
- 'Course language: Python'
- Professionals with some Python experience who would like to expand their skills
to learn about various outlier detection techniques
- source_sentence: 'React Ecosystem: Forms'
sentences:
- 'Course language: JavaScript'
- 'Prerequisite course required: React Ecosystem: API Calls'
- Professionals who would like to learn about advanced concepts that would allow
them to build interactive websites with React.
- A course that builds on the foundations of React framework and expands learners'
skills to more advanced concepts.
---
# SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("datasocietyco/bge-base-en-v1.5-course-recommender-v2")
# Run inference
sentences = [
'React Ecosystem: Forms',
"A course that builds on the foundations of React framework and expands learners' skills to more advanced concepts.",
'Course language: JavaScript',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 50 training samples
* Columns: <code>name</code>, <code>description</code>, <code>languages</code>, <code>prerequisites</code>, and <code>target_audience</code>
* Approximate statistics based on the first 50 samples:
| | name | description | languages | prerequisites | target_audience |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 7.0 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 43.96 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 6.6 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.32 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 22.74 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
| name | description | languages | prerequisites | target_audience |
|:--------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Autoencoders</code> | <code>This course takes students through a journey into the world od autoencoders - a set of powerful deep learning models that have a special place in the world of image analysis. By the end of this course students will be able to navigate through the application space of autoencoders and implement autoencoders to perform tasks such as image denoising and more.</code> | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing and computer vision.</code> |
| <code>Advanced CNN</code> | <code>This course build on the subject of Convolutional Neural Networks and dives into the complex pre-trained state-of-the-art CNN architectures. It also gives students a preview of what transfer learning is and why it is such a powerful concept in Deep Learning. By the end of this course students will be able to have implemented and explored pre-trained models such as ResNet, VGG16, and Inception3.</code> | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing, computer vision, and transfer learning.</code> |
| <code>Advanced Clustering in R</code> | <code>This course covers the unsupervised learning method called clustering which is used to find patterns or groups in data without the need for labelled data. This course includes application of different methods of clustering on categorical or mixed data, equipping learners to build, evaluate, and interpret these models.</code> | <code>Course language: R</code> | <code>Prerequisite course required: Intermediate Clustering in R</code> | <code>Professionals with some R experience who would like to expand their skillset to learn the core unsupervised learning techniques. Analysts with experience in another similar programming language who would like to learn core unsupervised learning frameworks and packages in R.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 50 evaluation samples
* Columns: <code>name</code>, <code>description</code>, <code>languages</code>, <code>prerequisites</code>, and <code>target_audience</code>
* Approximate statistics based on the first 50 samples:
| | name | description | languages | prerequisites | target_audience |
|:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 7.0 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 43.96 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 6.6 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.32 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 22.74 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
| name | description | languages | prerequisites | target_audience |
|:--------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Autoencoders</code> | <code>This course takes students through a journey into the world od autoencoders - a set of powerful deep learning models that have a special place in the world of image analysis. By the end of this course students will be able to navigate through the application space of autoencoders and implement autoencoders to perform tasks such as image denoising and more.</code> | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing and computer vision.</code> |
| <code>Advanced CNN</code> | <code>This course build on the subject of Convolutional Neural Networks and dives into the complex pre-trained state-of-the-art CNN architectures. It also gives students a preview of what transfer learning is and why it is such a powerful concept in Deep Learning. By the end of this course students will be able to have implemented and explored pre-trained models such as ResNet, VGG16, and Inception3.</code> | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing, computer vision, and transfer learning.</code> |
| <code>Advanced Clustering in R</code> | <code>This course covers the unsupervised learning method called clustering which is used to find patterns or groups in data without the need for labelled data. This course includes application of different methods of clustering on categorical or mixed data, equipping learners to build, evaluate, and interpret these models.</code> | <code>Course language: R</code> | <code>Prerequisite course required: Intermediate Clustering in R</code> | <code>Professionals with some R experience who would like to expand their skillset to learn the core unsupervised learning techniques. Analysts with experience in another similar programming language who would like to learn core unsupervised learning frameworks and packages in R.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 3e-06
- `max_steps`: 64
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 64
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss |
|:-----:|:----:|:-------------:|:------:|
| 5.0 | 20 | 1.0201 | 0.7447 |
| 5.5 | 40 | 0.6132 | 0.5379 |
| 6.0 | 60 | 0.5127 | 0.4702 |
### Framework Versions
- Python: 3.9.13
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.2.2
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |