File size: 25,194 Bytes
26bece5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
---
base_model: BAAI/bge-base-en-v1.5
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:50
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Statistics & Probability
  sentences:
  - 'Course language: Python'
  - 'Prerequisite course required: Intermediate Statistics'
  - This course is designed for learners who would like to learn about statistics
    and apply it for decision-making. This course is a comprehensive review of advanced
    statistics topics on probability like permutations and combinations, joint probability,
    conditional probability, marginal probability, and Bayes' theorem that provides
    a way to revise existing predictions or update probabilities given new or additional
    evidence.
  - Professionals some Python experience who would like to expand their skill set
    to more advanced Python visualization techniques and tools.
- source_sentence: Intermediate Statistics
  sentences:
  - 'Course language: Python'
  - Professionals some Python experience who would like to expand their skill set
    to more advanced Python visualization techniques and tools.
  - This course is designed for learners who would like to learn about statistics
    and apply it for decision-making. This course is a comprehensive review of intermediate
    statistics topics like t-value, t-distribution, chi-square distribution, f-statistic,
    and f-distribution that enable us to compare observed and expected frequencies
    objectively.
  - 'Prerequisite course required: Introduction to Statistics'
- source_sentence: Cypress
  sentences:
  - Cypress is an end-to-end testing framework for your web application. This course
    explores its features, core concepts, its ecosystem, and how to write tests.
  - 'Course language: TBD'
  - 'Prerequisite course required: Unit Testing in Jest'
  - Professionals who would like to explore the world of testing web applications
- source_sentence: Intermediate Outlier Detection
  sentences:
  - 'Prerequisite course required: Intro to Outlier Detection'
  - Detecting outlier data points are powerful machine learning techniques. This course
    covers how techniques like Local Outlier Factor and Isolation Forest play a role
    in anomaly and outlier detection. By the end of the course, students will learn
    to implement these techniques to identify anomalous data points
  - 'Course language: Python'
  - Professionals with some Python experience who would like to expand their skills
    to learn about various outlier detection techniques
- source_sentence: 'React Ecosystem: Forms'
  sentences:
  - 'Course language: JavaScript'
  - 'Prerequisite course required: React Ecosystem: API Calls'
  - Professionals who would like to learn about advanced concepts that would allow
    them to build interactive websites with React.
  - A course that builds on the foundations of React framework and expands learners'
    skills to more advanced concepts.
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("datasocietyco/bge-base-en-v1.5-course-recommender-v2")
# Run inference
sentences = [
    'React Ecosystem: Forms',
    "A course that builds on the foundations of React framework and expands learners' skills to more advanced concepts.",
    'Course language: JavaScript',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 50 training samples
* Columns: <code>name</code>, <code>description</code>, <code>languages</code>, <code>prerequisites</code>, and <code>target_audience</code>
* Approximate statistics based on the first 50 samples:
  |         | name                                                                            | description                                                                         | languages                                                                       | prerequisites                                                                     | target_audience                                                                    |
  |:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                          | string                                                                              | string                                                                          | string                                                                            | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 7.0 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 43.96 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 6.6 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.32 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 22.74 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
  | name                                  | description                                                                                                                                                                                                                                                                                                                                                                                                                 | languages                            | prerequisites                                                                                        | target_audience                                                                                                                                                                                                                                                                                 |
  |:--------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Autoencoders</code>             | <code>This course takes students through a journey into the world od autoencoders - a set of powerful deep learning models that have a special place in the world of image analysis. By the end of this course students will be able to navigate through the application space of autoencoders and implement autoencoders to perform tasks such as image denoising and more.</code>                                         | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing and computer vision.</code>                                                                                                                |
  | <code>Advanced CNN</code>             | <code>This course build on the subject of Convolutional Neural Networks and dives into the complex pre-trained state-of-the-art CNN architectures. It also gives students a preview of what transfer learning is and why it is such a powerful concept in Deep Learning. By the end of this course students will be able to have implemented and explored pre-trained models such as ResNet,  VGG16, and Inception3.</code> | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing, computer vision, and transfer learning.</code>                                                                                            |
  | <code>Advanced Clustering in R</code> | <code>This course covers the unsupervised learning method called clustering which is used to find patterns or groups in data without the need for labelled data. This course includes application of different methods of clustering on categorical or mixed data, equipping learners to build, evaluate, and interpret these models.</code>                                                                                | <code>Course language: R</code>      | <code>Prerequisite course required: Intermediate Clustering in R</code>                              | <code>Professionals with some R experience who would like to expand their skillset to learn the core unsupervised learning techniques. Analysts with experience in another similar programming language who would like to learn core unsupervised learning frameworks and packages in R.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 50 evaluation samples
* Columns: <code>name</code>, <code>description</code>, <code>languages</code>, <code>prerequisites</code>, and <code>target_audience</code>
* Approximate statistics based on the first 50 samples:
  |         | name                                                                            | description                                                                         | languages                                                                       | prerequisites                                                                     | target_audience                                                                    |
  |:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                          | string                                                                              | string                                                                          | string                                                                            | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 7.0 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 43.96 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 6.6 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 12.32 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 22.74 tokens</li><li>max: 54 tokens</li></ul> |
* Samples:
  | name                                  | description                                                                                                                                                                                                                                                                                                                                                                                                                 | languages                            | prerequisites                                                                                        | target_audience                                                                                                                                                                                                                                                                                 |
  |:--------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Autoencoders</code>             | <code>This course takes students through a journey into the world od autoencoders - a set of powerful deep learning models that have a special place in the world of image analysis. By the end of this course students will be able to navigate through the application space of autoencoders and implement autoencoders to perform tasks such as image denoising and more.</code>                                         | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing and computer vision.</code>                                                                                                                |
  | <code>Advanced CNN</code>             | <code>This course build on the subject of Convolutional Neural Networks and dives into the complex pre-trained state-of-the-art CNN architectures. It also gives students a preview of what transfer learning is and why it is such a powerful concept in Deep Learning. By the end of this course students will be able to have implemented and explored pre-trained models such as ResNet,  VGG16, and Inception3.</code> | <code>Course language: Python</code> | <code>Prerequisite course required: Convolutional Neural Networks (CNN) for Image Recognition</code> | <code>Professionals some Python experience who would like to expand their skillset to more advanced machine learning algorithms for image processing, computer vision, and transfer learning.</code>                                                                                            |
  | <code>Advanced Clustering in R</code> | <code>This course covers the unsupervised learning method called clustering which is used to find patterns or groups in data without the need for labelled data. This course includes application of different methods of clustering on categorical or mixed data, equipping learners to build, evaluate, and interpret these models.</code>                                                                                | <code>Course language: R</code>      | <code>Prerequisite course required: Intermediate Clustering in R</code>                              | <code>Professionals with some R experience who would like to expand their skillset to learn the core unsupervised learning techniques. Analysts with experience in another similar programming language who would like to learn core unsupervised learning frameworks and packages in R.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 3e-06
- `max_steps`: 64
- `warmup_ratio`: 0.1
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: 64
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | loss   |
|:-----:|:----:|:-------------:|:------:|
| 5.0   | 20   | 1.0201        | 0.7447 |
| 5.5   | 40   | 0.6132        | 0.5379 |
| 6.0   | 60   | 0.5127        | 0.4702 |


### Framework Versions
- Python: 3.9.13
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.2.2
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->